...

Source file src/runtime/mgcstack.go

Documentation: runtime

     1  // Copyright 2018 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector: stack objects and stack tracing
     6  // See the design doc at https://docs.google.com/document/d/1un-Jn47yByHL7I0aVIP_uVCMxjdM5mpelJhiKlIqxkE/edit?usp=sharing
     7  // Also see issue 22350.
     8  
     9  // Stack tracing solves the problem of determining which parts of the
    10  // stack are live and should be scanned. It runs as part of scanning
    11  // a single goroutine stack.
    12  //
    13  // Normally determining which parts of the stack are live is easy to
    14  // do statically, as user code has explicit references (reads and
    15  // writes) to stack variables. The compiler can do a simple dataflow
    16  // analysis to determine liveness of stack variables at every point in
    17  // the code. See cmd/compile/internal/gc/plive.go for that analysis.
    18  //
    19  // However, when we take the address of a stack variable, determining
    20  // whether that variable is still live is less clear. We can still
    21  // look for static accesses, but accesses through a pointer to the
    22  // variable are difficult in general to track statically. That pointer
    23  // can be passed among functions on the stack, conditionally retained,
    24  // etc.
    25  //
    26  // Instead, we will track pointers to stack variables dynamically.
    27  // All pointers to stack-allocated variables will themselves be on the
    28  // stack somewhere (or in associated locations, like defer records), so
    29  // we can find them all efficiently.
    30  //
    31  // Stack tracing is organized as a mini garbage collection tracing
    32  // pass. The objects in this garbage collection are all the variables
    33  // on the stack whose address is taken, and which themselves contain a
    34  // pointer. We call these variables "stack objects".
    35  //
    36  // We begin by determining all the stack objects on the stack and all
    37  // the statically live pointers that may point into the stack. We then
    38  // process each pointer to see if it points to a stack object. If it
    39  // does, we scan that stack object. It may contain pointers into the
    40  // heap, in which case those pointers are passed to the main garbage
    41  // collection. It may also contain pointers into the stack, in which
    42  // case we add them to our set of stack pointers.
    43  //
    44  // Once we're done processing all the pointers (including the ones we
    45  // added during processing), we've found all the stack objects that
    46  // are live. Any dead stack objects are not scanned and their contents
    47  // will not keep heap objects live. Unlike the main garbage
    48  // collection, we can't sweep the dead stack objects; they live on in
    49  // a moribund state until the stack frame that contains them is
    50  // popped.
    51  //
    52  // A stack can look like this:
    53  //
    54  // +----------+
    55  // | foo()    |
    56  // | +------+ |
    57  // | |  A   | | <---\
    58  // | +------+ |     |
    59  // |          |     |
    60  // | +------+ |     |
    61  // | |  B   | |     |
    62  // | +------+ |     |
    63  // |          |     |
    64  // +----------+     |
    65  // | bar()    |     |
    66  // | +------+ |     |
    67  // | |  C   | | <-\ |
    68  // | +----|-+ |   | |
    69  // |      |   |   | |
    70  // | +----v-+ |   | |
    71  // | |  D  ---------/
    72  // | +------+ |   |
    73  // |          |   |
    74  // +----------+   |
    75  // | baz()    |   |
    76  // | +------+ |   |
    77  // | |  E  -------/
    78  // | +------+ |
    79  // |      ^   |
    80  // | F: --/   |
    81  // |          |
    82  // +----------+
    83  //
    84  // foo() calls bar() calls baz(). Each has a frame on the stack.
    85  // foo() has stack objects A and B.
    86  // bar() has stack objects C and D, with C pointing to D and D pointing to A.
    87  // baz() has a stack object E pointing to C, and a local variable F pointing to E.
    88  //
    89  // Starting from the pointer in local variable F, we will eventually
    90  // scan all of E, C, D, and A (in that order). B is never scanned
    91  // because there is no live pointer to it. If B is also statically
    92  // dead (meaning that foo() never accesses B again after it calls
    93  // bar()), then B's pointers into the heap are not considered live.
    94  
    95  package runtime
    96  
    97  import (
    98  	"internal/goarch"
    99  	"unsafe"
   100  )
   101  
   102  const stackTraceDebug = false
   103  
   104  // Buffer for pointers found during stack tracing.
   105  // Must be smaller than or equal to workbuf.
   106  //
   107  //go:notinheap
   108  type stackWorkBuf struct {
   109  	stackWorkBufHdr
   110  	obj [(_WorkbufSize - unsafe.Sizeof(stackWorkBufHdr{})) / goarch.PtrSize]uintptr
   111  }
   112  
   113  // Header declaration must come after the buf declaration above, because of issue #14620.
   114  //
   115  //go:notinheap
   116  type stackWorkBufHdr struct {
   117  	workbufhdr
   118  	next *stackWorkBuf // linked list of workbufs
   119  	// Note: we could theoretically repurpose lfnode.next as this next pointer.
   120  	// It would save 1 word, but that probably isn't worth busting open
   121  	// the lfnode API.
   122  }
   123  
   124  // Buffer for stack objects found on a goroutine stack.
   125  // Must be smaller than or equal to workbuf.
   126  //
   127  //go:notinheap
   128  type stackObjectBuf struct {
   129  	stackObjectBufHdr
   130  	obj [(_WorkbufSize - unsafe.Sizeof(stackObjectBufHdr{})) / unsafe.Sizeof(stackObject{})]stackObject
   131  }
   132  
   133  //go:notinheap
   134  type stackObjectBufHdr struct {
   135  	workbufhdr
   136  	next *stackObjectBuf
   137  }
   138  
   139  func init() {
   140  	if unsafe.Sizeof(stackWorkBuf{}) > unsafe.Sizeof(workbuf{}) {
   141  		panic("stackWorkBuf too big")
   142  	}
   143  	if unsafe.Sizeof(stackObjectBuf{}) > unsafe.Sizeof(workbuf{}) {
   144  		panic("stackObjectBuf too big")
   145  	}
   146  }
   147  
   148  // A stackObject represents a variable on the stack that has had
   149  // its address taken.
   150  //
   151  //go:notinheap
   152  type stackObject struct {
   153  	off   uint32             // offset above stack.lo
   154  	size  uint32             // size of object
   155  	r     *stackObjectRecord // info of the object (for ptr/nonptr bits). nil if object has been scanned.
   156  	left  *stackObject       // objects with lower addresses
   157  	right *stackObject       // objects with higher addresses
   158  }
   159  
   160  // obj.r = r, but with no write barrier.
   161  //
   162  //go:nowritebarrier
   163  func (obj *stackObject) setRecord(r *stackObjectRecord) {
   164  	// Types of stack objects are always in read-only memory, not the heap.
   165  	// So not using a write barrier is ok.
   166  	*(*uintptr)(unsafe.Pointer(&obj.r)) = uintptr(unsafe.Pointer(r))
   167  }
   168  
   169  // A stackScanState keeps track of the state used during the GC walk
   170  // of a goroutine.
   171  type stackScanState struct {
   172  	cache pcvalueCache
   173  
   174  	// stack limits
   175  	stack stack
   176  
   177  	// conservative indicates that the next frame must be scanned conservatively.
   178  	// This applies only to the innermost frame at an async safe-point.
   179  	conservative bool
   180  
   181  	// buf contains the set of possible pointers to stack objects.
   182  	// Organized as a LIFO linked list of buffers.
   183  	// All buffers except possibly the head buffer are full.
   184  	buf     *stackWorkBuf
   185  	freeBuf *stackWorkBuf // keep around one free buffer for allocation hysteresis
   186  
   187  	// cbuf contains conservative pointers to stack objects. If
   188  	// all pointers to a stack object are obtained via
   189  	// conservative scanning, then the stack object may be dead
   190  	// and may contain dead pointers, so it must be scanned
   191  	// defensively.
   192  	cbuf *stackWorkBuf
   193  
   194  	// list of stack objects
   195  	// Objects are in increasing address order.
   196  	head  *stackObjectBuf
   197  	tail  *stackObjectBuf
   198  	nobjs int
   199  
   200  	// root of binary tree for fast object lookup by address
   201  	// Initialized by buildIndex.
   202  	root *stackObject
   203  }
   204  
   205  // Add p as a potential pointer to a stack object.
   206  // p must be a stack address.
   207  func (s *stackScanState) putPtr(p uintptr, conservative bool) {
   208  	if p < s.stack.lo || p >= s.stack.hi {
   209  		throw("address not a stack address")
   210  	}
   211  	head := &s.buf
   212  	if conservative {
   213  		head = &s.cbuf
   214  	}
   215  	buf := *head
   216  	if buf == nil {
   217  		// Initial setup.
   218  		buf = (*stackWorkBuf)(unsafe.Pointer(getempty()))
   219  		buf.nobj = 0
   220  		buf.next = nil
   221  		*head = buf
   222  	} else if buf.nobj == len(buf.obj) {
   223  		if s.freeBuf != nil {
   224  			buf = s.freeBuf
   225  			s.freeBuf = nil
   226  		} else {
   227  			buf = (*stackWorkBuf)(unsafe.Pointer(getempty()))
   228  		}
   229  		buf.nobj = 0
   230  		buf.next = *head
   231  		*head = buf
   232  	}
   233  	buf.obj[buf.nobj] = p
   234  	buf.nobj++
   235  }
   236  
   237  // Remove and return a potential pointer to a stack object.
   238  // Returns 0 if there are no more pointers available.
   239  //
   240  // This prefers non-conservative pointers so we scan stack objects
   241  // precisely if there are any non-conservative pointers to them.
   242  func (s *stackScanState) getPtr() (p uintptr, conservative bool) {
   243  	for _, head := range []**stackWorkBuf{&s.buf, &s.cbuf} {
   244  		buf := *head
   245  		if buf == nil {
   246  			// Never had any data.
   247  			continue
   248  		}
   249  		if buf.nobj == 0 {
   250  			if s.freeBuf != nil {
   251  				// Free old freeBuf.
   252  				putempty((*workbuf)(unsafe.Pointer(s.freeBuf)))
   253  			}
   254  			// Move buf to the freeBuf.
   255  			s.freeBuf = buf
   256  			buf = buf.next
   257  			*head = buf
   258  			if buf == nil {
   259  				// No more data in this list.
   260  				continue
   261  			}
   262  		}
   263  		buf.nobj--
   264  		return buf.obj[buf.nobj], head == &s.cbuf
   265  	}
   266  	// No more data in either list.
   267  	if s.freeBuf != nil {
   268  		putempty((*workbuf)(unsafe.Pointer(s.freeBuf)))
   269  		s.freeBuf = nil
   270  	}
   271  	return 0, false
   272  }
   273  
   274  // addObject adds a stack object at addr of type typ to the set of stack objects.
   275  func (s *stackScanState) addObject(addr uintptr, r *stackObjectRecord) {
   276  	x := s.tail
   277  	if x == nil {
   278  		// initial setup
   279  		x = (*stackObjectBuf)(unsafe.Pointer(getempty()))
   280  		x.next = nil
   281  		s.head = x
   282  		s.tail = x
   283  	}
   284  	if x.nobj > 0 && uint32(addr-s.stack.lo) < x.obj[x.nobj-1].off+x.obj[x.nobj-1].size {
   285  		throw("objects added out of order or overlapping")
   286  	}
   287  	if x.nobj == len(x.obj) {
   288  		// full buffer - allocate a new buffer, add to end of linked list
   289  		y := (*stackObjectBuf)(unsafe.Pointer(getempty()))
   290  		y.next = nil
   291  		x.next = y
   292  		s.tail = y
   293  		x = y
   294  	}
   295  	obj := &x.obj[x.nobj]
   296  	x.nobj++
   297  	obj.off = uint32(addr - s.stack.lo)
   298  	obj.size = uint32(r.size)
   299  	obj.setRecord(r)
   300  	// obj.left and obj.right will be initialized by buildIndex before use.
   301  	s.nobjs++
   302  }
   303  
   304  // buildIndex initializes s.root to a binary search tree.
   305  // It should be called after all addObject calls but before
   306  // any call of findObject.
   307  func (s *stackScanState) buildIndex() {
   308  	s.root, _, _ = binarySearchTree(s.head, 0, s.nobjs)
   309  }
   310  
   311  // Build a binary search tree with the n objects in the list
   312  // x.obj[idx], x.obj[idx+1], ..., x.next.obj[0], ...
   313  // Returns the root of that tree, and the buf+idx of the nth object after x.obj[idx].
   314  // (The first object that was not included in the binary search tree.)
   315  // If n == 0, returns nil, x.
   316  func binarySearchTree(x *stackObjectBuf, idx int, n int) (root *stackObject, restBuf *stackObjectBuf, restIdx int) {
   317  	if n == 0 {
   318  		return nil, x, idx
   319  	}
   320  	var left, right *stackObject
   321  	left, x, idx = binarySearchTree(x, idx, n/2)
   322  	root = &x.obj[idx]
   323  	idx++
   324  	if idx == len(x.obj) {
   325  		x = x.next
   326  		idx = 0
   327  	}
   328  	right, x, idx = binarySearchTree(x, idx, n-n/2-1)
   329  	root.left = left
   330  	root.right = right
   331  	return root, x, idx
   332  }
   333  
   334  // findObject returns the stack object containing address a, if any.
   335  // Must have called buildIndex previously.
   336  func (s *stackScanState) findObject(a uintptr) *stackObject {
   337  	off := uint32(a - s.stack.lo)
   338  	obj := s.root
   339  	for {
   340  		if obj == nil {
   341  			return nil
   342  		}
   343  		if off < obj.off {
   344  			obj = obj.left
   345  			continue
   346  		}
   347  		if off >= obj.off+obj.size {
   348  			obj = obj.right
   349  			continue
   350  		}
   351  		return obj
   352  	}
   353  }
   354  

View as plain text