// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa // This file defines synthesis of Functions that delegate to declared // methods; they come in three kinds: // // (1) wrappers: methods that wrap declared methods, performing // implicit pointer indirections and embedded field selections. // // (2) thunks: funcs that wrap declared methods. Like wrappers, // thunks perform indirections and field selections. The thunk's // first parameter is used as the receiver for the method call. // // (3) bounds: funcs that wrap declared methods. The bound's sole // free variable, supplied by a closure, is used as the receiver // for the method call. No indirections or field selections are // performed since they can be done before the call. import ( "fmt" "go/token" "go/types" ) // -- wrappers ----------------------------------------------------------- // makeWrapper returns a synthetic method that delegates to the // declared method denoted by meth.Obj(), first performing any // necessary pointer indirections or field selections implied by meth. // // The resulting method's receiver type is meth.Recv(). // // This function is versatile but quite subtle! Consider the // following axes of variation when making changes: // - optional receiver indirection // - optional implicit field selections // - meth.Obj() may denote a concrete or an interface method // - the result may be a thunk or a wrapper. // // EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu) func makeWrapper(prog *Program, sel *selection, cr *creator) *Function { obj := sel.obj.(*types.Func) // the declared function sig := sel.typ.(*types.Signature) // type of this wrapper var recv *types.Var // wrapper's receiver or thunk's params[0] name := obj.Name() var description string var start int // first regular param if sel.kind == types.MethodExpr { name += "$thunk" description = "thunk" recv = sig.Params().At(0) start = 1 } else { description = "wrapper" recv = sig.Recv() } description = fmt.Sprintf("%s for %s", description, sel.obj) if prog.mode&LogSource != 0 { defer logStack("make %s to (%s)", description, recv.Type())() } fn := &Function{ name: name, method: sel, object: obj, Signature: sig, Synthetic: description, Prog: prog, pos: obj.Pos(), info: nil, // info is not set on wrappers. } cr.Add(fn) fn.startBody() fn.addSpilledParam(recv) createParams(fn, start) indices := sel.index var v Value = fn.Locals[0] // spilled receiver if isPointer(sel.recv) { v = emitLoad(fn, v) // For simple indirection wrappers, perform an informative nil-check: // "value method (T).f called using nil *T pointer" if len(indices) == 1 && !isPointer(recvType(obj)) { var c Call c.Call.Value = &Builtin{ name: "ssa:wrapnilchk", sig: types.NewSignature(nil, types.NewTuple(anonVar(sel.recv), anonVar(tString), anonVar(tString)), types.NewTuple(anonVar(sel.recv)), false), } c.Call.Args = []Value{ v, stringConst(deref(sel.recv).String()), stringConst(sel.obj.Name()), } c.setType(v.Type()) v = fn.emit(&c) } } // Invariant: v is a pointer, either // value of *A receiver param, or // address of A spilled receiver. // We use pointer arithmetic (FieldAddr possibly followed by // Load) in preference to value extraction (Field possibly // preceded by Load). v = emitImplicitSelections(fn, v, indices[:len(indices)-1], token.NoPos) // Invariant: v is a pointer, either // value of implicit *C field, or // address of implicit C field. var c Call if r := recvType(obj); !types.IsInterface(r) { // concrete method if !isPointer(r) { v = emitLoad(fn, v) } callee := prog.originFunc(obj) if callee.typeparams.Len() > 0 { callee = prog.lookupOrCreateInstance(callee, receiverTypeArgs(obj), cr) } c.Call.Value = callee c.Call.Args = append(c.Call.Args, v) } else { c.Call.Method = obj c.Call.Value = emitLoad(fn, v) // interface (possibly a typeparam) } for _, arg := range fn.Params[1:] { c.Call.Args = append(c.Call.Args, arg) } emitTailCall(fn, &c) fn.finishBody() fn.done() return fn } // createParams creates parameters for wrapper method fn based on its // Signature.Params, which do not include the receiver. // start is the index of the first regular parameter to use. func createParams(fn *Function, start int) { tparams := fn.Signature.Params() for i, n := start, tparams.Len(); i < n; i++ { fn.addParamObj(tparams.At(i)) } } // -- bounds ----------------------------------------------------------- // makeBound returns a bound method wrapper (or "bound"), a synthetic // function that delegates to a concrete or interface method denoted // by obj. The resulting function has no receiver, but has one free // variable which will be used as the method's receiver in the // tail-call. // // Use MakeClosure with such a wrapper to construct a bound method // closure. e.g.: // // type T int or: type T interface { meth() } // func (t T) meth() // var t T // f := t.meth // f() // calls t.meth() // // f is a closure of a synthetic wrapper defined as if by: // // f := func() { return t.meth() } // // Unlike makeWrapper, makeBound need perform no indirection or field // selections because that can be done before the closure is // constructed. // // EXCLUSIVE_LOCKS_ACQUIRED(meth.Prog.methodsMu) func makeBound(prog *Program, obj *types.Func, cr *creator) *Function { targs := receiverTypeArgs(obj) key := boundsKey{obj, prog.canon.List(targs)} prog.methodsMu.Lock() defer prog.methodsMu.Unlock() fn, ok := prog.bounds[key] if !ok { description := fmt.Sprintf("bound method wrapper for %s", obj) if prog.mode&LogSource != 0 { defer logStack("%s", description)() } fn = &Function{ name: obj.Name() + "$bound", object: obj, Signature: changeRecv(obj.Type().(*types.Signature), nil), // drop receiver Synthetic: description, Prog: prog, pos: obj.Pos(), info: nil, // info is not set on wrappers. } cr.Add(fn) fv := &FreeVar{name: "recv", typ: recvType(obj), parent: fn} fn.FreeVars = []*FreeVar{fv} fn.startBody() createParams(fn, 0) var c Call if !types.IsInterface(recvType(obj)) { // concrete callee := prog.originFunc(obj) if callee.typeparams.Len() > 0 { callee = prog.lookupOrCreateInstance(callee, targs, cr) } c.Call.Value = callee c.Call.Args = []Value{fv} } else { c.Call.Method = obj c.Call.Value = fv // interface (possibly a typeparam) } for _, arg := range fn.Params { c.Call.Args = append(c.Call.Args, arg) } emitTailCall(fn, &c) fn.finishBody() fn.done() prog.bounds[key] = fn } return fn } // -- thunks ----------------------------------------------------------- // makeThunk returns a thunk, a synthetic function that delegates to a // concrete or interface method denoted by sel.obj. The resulting // function has no receiver, but has an additional (first) regular // parameter. // // Precondition: sel.kind == types.MethodExpr. // // type T int or: type T interface { meth() } // func (t T) meth() // f := T.meth // var t T // f(t) // calls t.meth() // // f is a synthetic wrapper defined as if by: // // f := func(t T) { return t.meth() } // // TODO(adonovan): opt: currently the stub is created even when used // directly in a function call: C.f(i, 0). This is less efficient // than inlining the stub. // // EXCLUSIVE_LOCKS_ACQUIRED(meth.Prog.methodsMu) func makeThunk(prog *Program, sel *selection, cr *creator) *Function { if sel.kind != types.MethodExpr { panic(sel) } // Canonicalize sel.recv to avoid constructing duplicate thunks. canonRecv := prog.canon.Type(sel.recv) key := selectionKey{ kind: sel.kind, recv: canonRecv, obj: sel.obj, index: fmt.Sprint(sel.index), indirect: sel.indirect, } prog.methodsMu.Lock() defer prog.methodsMu.Unlock() fn, ok := prog.thunks[key] if !ok { fn = makeWrapper(prog, sel, cr) if fn.Signature.Recv() != nil { panic(fn) // unexpected receiver } prog.thunks[key] = fn } return fn } func changeRecv(s *types.Signature, recv *types.Var) *types.Signature { return types.NewSignature(recv, s.Params(), s.Results(), s.Variadic()) } // selectionKey is like types.Selection but a usable map key. type selectionKey struct { kind types.SelectionKind recv types.Type // canonicalized via Program.canon obj types.Object index string indirect bool } // boundsKey is a unique for the object and a type instantiation. type boundsKey struct { obj types.Object // t.meth inst *typeList // canonical type instantiation list. } // A local version of *types.Selection. // Needed for some additional control, such as creating a MethodExpr for an instantiation. type selection struct { kind types.SelectionKind recv types.Type typ types.Type obj types.Object index []int indirect bool } func toSelection(sel *types.Selection) *selection { return &selection{ kind: sel.Kind(), recv: sel.Recv(), typ: sel.Type(), obj: sel.Obj(), index: sel.Index(), indirect: sel.Indirect(), } } // -- instantiations -------------------------------------------------- // buildInstantiationWrapper creates a body for an instantiation // wrapper fn. The body calls the original generic function, // bracketed by ChangeType conversions on its arguments and results. func buildInstantiationWrapper(fn *Function) { orig := fn.topLevelOrigin sig := fn.Signature fn.startBody() if sig.Recv() != nil { fn.addParamObj(sig.Recv()) } createParams(fn, 0) // Create body. Add a call to origin generic function // and make type changes between argument and parameters, // as well as return values. var c Call c.Call.Value = orig if res := orig.Signature.Results(); res.Len() == 1 { c.typ = res.At(0).Type() } else { c.typ = res } // parameter of instance becomes an argument to the call // to the original generic function. argOffset := 0 for i, arg := range fn.Params { var typ types.Type if i == 0 && sig.Recv() != nil { typ = orig.Signature.Recv().Type() argOffset = 1 } else { typ = orig.Signature.Params().At(i - argOffset).Type() } c.Call.Args = append(c.Call.Args, emitTypeCoercion(fn, arg, typ)) } results := fn.emit(&c) var ret Return switch res := sig.Results(); res.Len() { case 0: // no results, do nothing. case 1: ret.Results = []Value{emitTypeCoercion(fn, results, res.At(0).Type())} default: for i := 0; i < sig.Results().Len(); i++ { v := emitExtract(fn, results, i) ret.Results = append(ret.Results, emitTypeCoercion(fn, v, res.At(i).Type())) } } fn.emit(&ret) fn.currentBlock = nil fn.finishBody() }