...

Source file src/golang.org/x/tools/go/ssa/ssa.go

Documentation: golang.org/x/tools/go/ssa

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This package defines a high-level intermediate representation for
     8  // Go programs using static single-assignment (SSA) form.
     9  
    10  import (
    11  	"fmt"
    12  	"go/ast"
    13  	"go/constant"
    14  	"go/token"
    15  	"go/types"
    16  	"sync"
    17  
    18  	"golang.org/x/tools/go/types/typeutil"
    19  	"golang.org/x/tools/internal/typeparams"
    20  )
    21  
    22  // A Program is a partial or complete Go program converted to SSA form.
    23  type Program struct {
    24  	Fset       *token.FileSet              // position information for the files of this Program
    25  	imported   map[string]*Package         // all importable Packages, keyed by import path
    26  	packages   map[*types.Package]*Package // all loaded Packages, keyed by object
    27  	mode       BuilderMode                 // set of mode bits for SSA construction
    28  	MethodSets typeutil.MethodSetCache     // cache of type-checker's method-sets
    29  
    30  	canon *canonizer          // type canonicalization map
    31  	ctxt  *typeparams.Context // cache for type checking instantiations
    32  
    33  	methodsMu     sync.Mutex                 // guards the following maps:
    34  	methodSets    typeutil.Map               // maps type to its concrete methodSet
    35  	runtimeTypes  typeutil.Map               // types for which rtypes are needed
    36  	bounds        map[boundsKey]*Function    // bounds for curried x.Method closures
    37  	thunks        map[selectionKey]*Function // thunks for T.Method expressions
    38  	instances     map[*Function]*instanceSet // instances of generic functions
    39  	parameterized tpWalker                   // determines whether a type is parameterized.
    40  }
    41  
    42  // A Package is a single analyzed Go package containing Members for
    43  // all package-level functions, variables, constants and types it
    44  // declares.  These may be accessed directly via Members, or via the
    45  // type-specific accessor methods Func, Type, Var and Const.
    46  //
    47  // Members also contains entries for "init" (the synthetic package
    48  // initializer) and "init#%d", the nth declared init function,
    49  // and unspecified other things too.
    50  type Package struct {
    51  	Prog    *Program                // the owning program
    52  	Pkg     *types.Package          // the corresponding go/types.Package
    53  	Members map[string]Member       // all package members keyed by name (incl. init and init#%d)
    54  	objects map[types.Object]Member // mapping of package objects to members (incl. methods). Contains *NamedConst, *Global, *Function.
    55  	init    *Function               // Func("init"); the package's init function
    56  	debug   bool                    // include full debug info in this package
    57  
    58  	// The following fields are set transiently, then cleared
    59  	// after building.
    60  	buildOnce sync.Once   // ensures package building occurs once
    61  	ninit     int32       // number of init functions
    62  	info      *types.Info // package type information
    63  	files     []*ast.File // package ASTs
    64  	created   creator     // members created as a result of building this package (includes declared functions, wrappers)
    65  }
    66  
    67  // A Member is a member of a Go package, implemented by *NamedConst,
    68  // *Global, *Function, or *Type; they are created by package-level
    69  // const, var, func and type declarations respectively.
    70  type Member interface {
    71  	Name() string                    // declared name of the package member
    72  	String() string                  // package-qualified name of the package member
    73  	RelString(*types.Package) string // like String, but relative refs are unqualified
    74  	Object() types.Object            // typechecker's object for this member, if any
    75  	Pos() token.Pos                  // position of member's declaration, if known
    76  	Type() types.Type                // type of the package member
    77  	Token() token.Token              // token.{VAR,FUNC,CONST,TYPE}
    78  	Package() *Package               // the containing package
    79  }
    80  
    81  // A Type is a Member of a Package representing a package-level named type.
    82  type Type struct {
    83  	object *types.TypeName
    84  	pkg    *Package
    85  }
    86  
    87  // A NamedConst is a Member of a Package representing a package-level
    88  // named constant.
    89  //
    90  // Pos() returns the position of the declaring ast.ValueSpec.Names[*]
    91  // identifier.
    92  //
    93  // NB: a NamedConst is not a Value; it contains a constant Value, which
    94  // it augments with the name and position of its 'const' declaration.
    95  type NamedConst struct {
    96  	object *types.Const
    97  	Value  *Const
    98  	pkg    *Package
    99  }
   100  
   101  // A Value is an SSA value that can be referenced by an instruction.
   102  type Value interface {
   103  	// Name returns the name of this value, and determines how
   104  	// this Value appears when used as an operand of an
   105  	// Instruction.
   106  	//
   107  	// This is the same as the source name for Parameters,
   108  	// Builtins, Functions, FreeVars, Globals.
   109  	// For constants, it is a representation of the constant's value
   110  	// and type.  For all other Values this is the name of the
   111  	// virtual register defined by the instruction.
   112  	//
   113  	// The name of an SSA Value is not semantically significant,
   114  	// and may not even be unique within a function.
   115  	Name() string
   116  
   117  	// If this value is an Instruction, String returns its
   118  	// disassembled form; otherwise it returns unspecified
   119  	// human-readable information about the Value, such as its
   120  	// kind, name and type.
   121  	String() string
   122  
   123  	// Type returns the type of this value.  Many instructions
   124  	// (e.g. IndexAddr) change their behaviour depending on the
   125  	// types of their operands.
   126  	Type() types.Type
   127  
   128  	// Parent returns the function to which this Value belongs.
   129  	// It returns nil for named Functions, Builtin, Const and Global.
   130  	Parent() *Function
   131  
   132  	// Referrers returns the list of instructions that have this
   133  	// value as one of their operands; it may contain duplicates
   134  	// if an instruction has a repeated operand.
   135  	//
   136  	// Referrers actually returns a pointer through which the
   137  	// caller may perform mutations to the object's state.
   138  	//
   139  	// Referrers is currently only defined if Parent()!=nil,
   140  	// i.e. for the function-local values FreeVar, Parameter,
   141  	// Functions (iff anonymous) and all value-defining instructions.
   142  	// It returns nil for named Functions, Builtin, Const and Global.
   143  	//
   144  	// Instruction.Operands contains the inverse of this relation.
   145  	Referrers() *[]Instruction
   146  
   147  	// Pos returns the location of the AST token most closely
   148  	// associated with the operation that gave rise to this value,
   149  	// or token.NoPos if it was not explicit in the source.
   150  	//
   151  	// For each ast.Node type, a particular token is designated as
   152  	// the closest location for the expression, e.g. the Lparen
   153  	// for an *ast.CallExpr.  This permits a compact but
   154  	// approximate mapping from Values to source positions for use
   155  	// in diagnostic messages, for example.
   156  	//
   157  	// (Do not use this position to determine which Value
   158  	// corresponds to an ast.Expr; use Function.ValueForExpr
   159  	// instead.  NB: it requires that the function was built with
   160  	// debug information.)
   161  	Pos() token.Pos
   162  }
   163  
   164  // An Instruction is an SSA instruction that computes a new Value or
   165  // has some effect.
   166  //
   167  // An Instruction that defines a value (e.g. BinOp) also implements
   168  // the Value interface; an Instruction that only has an effect (e.g. Store)
   169  // does not.
   170  type Instruction interface {
   171  	// String returns the disassembled form of this value.
   172  	//
   173  	// Examples of Instructions that are Values:
   174  	//       "x + y"     (BinOp)
   175  	//       "len([])"   (Call)
   176  	// Note that the name of the Value is not printed.
   177  	//
   178  	// Examples of Instructions that are not Values:
   179  	//       "return x"  (Return)
   180  	//       "*y = x"    (Store)
   181  	//
   182  	// (The separation Value.Name() from Value.String() is useful
   183  	// for some analyses which distinguish the operation from the
   184  	// value it defines, e.g., 'y = local int' is both an allocation
   185  	// of memory 'local int' and a definition of a pointer y.)
   186  	String() string
   187  
   188  	// Parent returns the function to which this instruction
   189  	// belongs.
   190  	Parent() *Function
   191  
   192  	// Block returns the basic block to which this instruction
   193  	// belongs.
   194  	Block() *BasicBlock
   195  
   196  	// setBlock sets the basic block to which this instruction belongs.
   197  	setBlock(*BasicBlock)
   198  
   199  	// Operands returns the operands of this instruction: the
   200  	// set of Values it references.
   201  	//
   202  	// Specifically, it appends their addresses to rands, a
   203  	// user-provided slice, and returns the resulting slice,
   204  	// permitting avoidance of memory allocation.
   205  	//
   206  	// The operands are appended in undefined order, but the order
   207  	// is consistent for a given Instruction; the addresses are
   208  	// always non-nil but may point to a nil Value.  Clients may
   209  	// store through the pointers, e.g. to effect a value
   210  	// renaming.
   211  	//
   212  	// Value.Referrers is a subset of the inverse of this
   213  	// relation.  (Referrers are not tracked for all types of
   214  	// Values.)
   215  	Operands(rands []*Value) []*Value
   216  
   217  	// Pos returns the location of the AST token most closely
   218  	// associated with the operation that gave rise to this
   219  	// instruction, or token.NoPos if it was not explicit in the
   220  	// source.
   221  	//
   222  	// For each ast.Node type, a particular token is designated as
   223  	// the closest location for the expression, e.g. the Go token
   224  	// for an *ast.GoStmt.  This permits a compact but approximate
   225  	// mapping from Instructions to source positions for use in
   226  	// diagnostic messages, for example.
   227  	//
   228  	// (Do not use this position to determine which Instruction
   229  	// corresponds to an ast.Expr; see the notes for Value.Pos.
   230  	// This position may be used to determine which non-Value
   231  	// Instruction corresponds to some ast.Stmts, but not all: If
   232  	// and Jump instructions have no Pos(), for example.)
   233  	Pos() token.Pos
   234  }
   235  
   236  // A Node is a node in the SSA value graph.  Every concrete type that
   237  // implements Node is also either a Value, an Instruction, or both.
   238  //
   239  // Node contains the methods common to Value and Instruction, plus the
   240  // Operands and Referrers methods generalized to return nil for
   241  // non-Instructions and non-Values, respectively.
   242  //
   243  // Node is provided to simplify SSA graph algorithms.  Clients should
   244  // use the more specific and informative Value or Instruction
   245  // interfaces where appropriate.
   246  type Node interface {
   247  	// Common methods:
   248  	String() string
   249  	Pos() token.Pos
   250  	Parent() *Function
   251  
   252  	// Partial methods:
   253  	Operands(rands []*Value) []*Value // nil for non-Instructions
   254  	Referrers() *[]Instruction        // nil for non-Values
   255  }
   256  
   257  // Function represents the parameters, results, and code of a function
   258  // or method.
   259  //
   260  // If Blocks is nil, this indicates an external function for which no
   261  // Go source code is available.  In this case, FreeVars and Locals
   262  // are nil too.  Clients performing whole-program analysis must
   263  // handle external functions specially.
   264  //
   265  // Blocks contains the function's control-flow graph (CFG).
   266  // Blocks[0] is the function entry point; block order is not otherwise
   267  // semantically significant, though it may affect the readability of
   268  // the disassembly.
   269  // To iterate over the blocks in dominance order, use DomPreorder().
   270  //
   271  // Recover is an optional second entry point to which control resumes
   272  // after a recovered panic.  The Recover block may contain only a return
   273  // statement, preceded by a load of the function's named return
   274  // parameters, if any.
   275  //
   276  // A nested function (Parent()!=nil) that refers to one or more
   277  // lexically enclosing local variables ("free variables") has FreeVars.
   278  // Such functions cannot be called directly but require a
   279  // value created by MakeClosure which, via its Bindings, supplies
   280  // values for these parameters.
   281  //
   282  // If the function is a method (Signature.Recv() != nil) then the first
   283  // element of Params is the receiver parameter.
   284  //
   285  // A Go package may declare many functions called "init".
   286  // For each one, Object().Name() returns "init" but Name() returns
   287  // "init#1", etc, in declaration order.
   288  //
   289  // Pos() returns the declaring ast.FuncLit.Type.Func or the position
   290  // of the ast.FuncDecl.Name, if the function was explicit in the
   291  // source.  Synthetic wrappers, for which Synthetic != "", may share
   292  // the same position as the function they wrap.
   293  // Syntax.Pos() always returns the position of the declaring "func" token.
   294  //
   295  // Type() returns the function's Signature.
   296  //
   297  // A generic function is a function or method that has uninstantiated type
   298  // parameters (TypeParams() != nil). Consider a hypothetical generic
   299  // method, (*Map[K,V]).Get. It may be instantiated with all ground
   300  // (non-parameterized) types as (*Map[string,int]).Get or with
   301  // parameterized types as (*Map[string,U]).Get, where U is a type parameter.
   302  // In both instantiations, Origin() refers to the instantiated generic
   303  // method, (*Map[K,V]).Get, TypeParams() refers to the parameters [K,V] of
   304  // the generic method. TypeArgs() refers to [string,U] or [string,int],
   305  // respectively, and is nil in the generic method.
   306  type Function struct {
   307  	name      string
   308  	object    types.Object // a declared *types.Func or one of its wrappers
   309  	method    *selection   // info about provenance of synthetic methods; thunk => non-nil
   310  	Signature *types.Signature
   311  	pos       token.Pos
   312  
   313  	Synthetic string        // provenance of synthetic function; "" for true source functions
   314  	syntax    ast.Node      // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode
   315  	parent    *Function     // enclosing function if anon; nil if global
   316  	Pkg       *Package      // enclosing package; nil for shared funcs (wrappers and error.Error)
   317  	Prog      *Program      // enclosing program
   318  	Params    []*Parameter  // function parameters; for methods, includes receiver
   319  	FreeVars  []*FreeVar    // free variables whose values must be supplied by closure
   320  	Locals    []*Alloc      // local variables of this function
   321  	Blocks    []*BasicBlock // basic blocks of the function; nil => external
   322  	Recover   *BasicBlock   // optional; control transfers here after recovered panic
   323  	AnonFuncs []*Function   // anonymous functions directly beneath this one
   324  	referrers []Instruction // referring instructions (iff Parent() != nil)
   325  	built     bool          // function has completed both CREATE and BUILD phase.
   326  	anonIdx   int32         // position of a nested function in parent's AnonFuncs. fn.Parent()!=nil => fn.Parent().AnonFunc[fn.anonIdx] == fn.
   327  
   328  	typeparams     *typeparams.TypeParamList // type parameters of this function. typeparams.Len() > 0 => generic or instance of generic function
   329  	typeargs       []types.Type              // type arguments that instantiated typeparams. len(typeargs) > 0 => instance of generic function
   330  	topLevelOrigin *Function                 // the origin function if this is an instance of a source function. nil if Parent()!=nil.
   331  
   332  	// The following fields are set transiently during building,
   333  	// then cleared.
   334  	currentBlock *BasicBlock              // where to emit code
   335  	objects      map[types.Object]Value   // addresses of local variables
   336  	namedResults []*Alloc                 // tuple of named results
   337  	targets      *targets                 // linked stack of branch targets
   338  	lblocks      map[types.Object]*lblock // labelled blocks
   339  	info         *types.Info              // *types.Info to build from. nil for wrappers.
   340  	subst        *subster                 // non-nil => expand generic body using this type substitution of ground types
   341  }
   342  
   343  // BasicBlock represents an SSA basic block.
   344  //
   345  // The final element of Instrs is always an explicit transfer of
   346  // control (If, Jump, Return, or Panic).
   347  //
   348  // A block may contain no Instructions only if it is unreachable,
   349  // i.e., Preds is nil.  Empty blocks are typically pruned.
   350  //
   351  // BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
   352  // graph independent of the SSA Value graph: the control-flow graph or
   353  // CFG.  It is illegal for multiple edges to exist between the same
   354  // pair of blocks.
   355  //
   356  // Each BasicBlock is also a node in the dominator tree of the CFG.
   357  // The tree may be navigated using Idom()/Dominees() and queried using
   358  // Dominates().
   359  //
   360  // The order of Preds and Succs is significant (to Phi and If
   361  // instructions, respectively).
   362  type BasicBlock struct {
   363  	Index        int            // index of this block within Parent().Blocks
   364  	Comment      string         // optional label; no semantic significance
   365  	parent       *Function      // parent function
   366  	Instrs       []Instruction  // instructions in order
   367  	Preds, Succs []*BasicBlock  // predecessors and successors
   368  	succs2       [2]*BasicBlock // initial space for Succs
   369  	dom          domInfo        // dominator tree info
   370  	gaps         int            // number of nil Instrs (transient)
   371  	rundefers    int            // number of rundefers (transient)
   372  }
   373  
   374  // Pure values ----------------------------------------
   375  
   376  // A FreeVar represents a free variable of the function to which it
   377  // belongs.
   378  //
   379  // FreeVars are used to implement anonymous functions, whose free
   380  // variables are lexically captured in a closure formed by
   381  // MakeClosure.  The value of such a free var is an Alloc or another
   382  // FreeVar and is considered a potentially escaping heap address, with
   383  // pointer type.
   384  //
   385  // FreeVars are also used to implement bound method closures.  Such a
   386  // free var represents the receiver value and may be of any type that
   387  // has concrete methods.
   388  //
   389  // Pos() returns the position of the value that was captured, which
   390  // belongs to an enclosing function.
   391  type FreeVar struct {
   392  	name      string
   393  	typ       types.Type
   394  	pos       token.Pos
   395  	parent    *Function
   396  	referrers []Instruction
   397  
   398  	// Transiently needed during building.
   399  	outer Value // the Value captured from the enclosing context.
   400  }
   401  
   402  // A Parameter represents an input parameter of a function.
   403  type Parameter struct {
   404  	name      string
   405  	object    types.Object // a *types.Var; nil for non-source locals
   406  	typ       types.Type
   407  	pos       token.Pos
   408  	parent    *Function
   409  	referrers []Instruction
   410  }
   411  
   412  // A Const represents a value known at build time.
   413  //
   414  // Consts include true constants of boolean, numeric, and string types, as
   415  // defined by the Go spec; these are represented by a non-nil Value field.
   416  //
   417  // Consts also include the "zero" value of any type, of which the nil values
   418  // of various pointer-like types are a special case; these are represented
   419  // by a nil Value field.
   420  //
   421  // Pos() returns token.NoPos.
   422  //
   423  // Example printed forms:
   424  //
   425  //		42:int
   426  //		"hello":untyped string
   427  //		3+4i:MyComplex
   428  //		nil:*int
   429  //		nil:[]string
   430  //		[3]int{}:[3]int
   431  //		struct{x string}{}:struct{x string}
   432  //	    0:interface{int|int64}
   433  //	    nil:interface{bool|int} // no go/constant representation
   434  type Const struct {
   435  	typ   types.Type
   436  	Value constant.Value
   437  }
   438  
   439  // A Global is a named Value holding the address of a package-level
   440  // variable.
   441  //
   442  // Pos() returns the position of the ast.ValueSpec.Names[*]
   443  // identifier.
   444  type Global struct {
   445  	name   string
   446  	object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
   447  	typ    types.Type
   448  	pos    token.Pos
   449  
   450  	Pkg *Package
   451  }
   452  
   453  // A Builtin represents a specific use of a built-in function, e.g. len.
   454  //
   455  // Builtins are immutable values.  Builtins do not have addresses.
   456  // Builtins can only appear in CallCommon.Value.
   457  //
   458  // Name() indicates the function: one of the built-in functions from the
   459  // Go spec (excluding "make" and "new") or one of these ssa-defined
   460  // intrinsics:
   461  //
   462  //	// wrapnilchk returns ptr if non-nil, panics otherwise.
   463  //	// (For use in indirection wrappers.)
   464  //	func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
   465  //
   466  // Object() returns a *types.Builtin for built-ins defined by the spec,
   467  // nil for others.
   468  //
   469  // Type() returns a *types.Signature representing the effective
   470  // signature of the built-in for this call.
   471  type Builtin struct {
   472  	name string
   473  	sig  *types.Signature
   474  }
   475  
   476  // Value-defining instructions  ----------------------------------------
   477  
   478  // The Alloc instruction reserves space for a variable of the given type,
   479  // zero-initializes it, and yields its address.
   480  //
   481  // Alloc values are always addresses, and have pointer types, so the
   482  // type of the allocated variable is actually
   483  // Type().Underlying().(*types.Pointer).Elem().
   484  //
   485  // If Heap is false, Alloc allocates space in the function's
   486  // activation record (frame); we refer to an Alloc(Heap=false) as a
   487  // "local" alloc.  Each local Alloc returns the same address each time
   488  // it is executed within the same activation; the space is
   489  // re-initialized to zero.
   490  //
   491  // If Heap is true, Alloc allocates space in the heap; we
   492  // refer to an Alloc(Heap=true) as a "new" alloc.  Each new Alloc
   493  // returns a different address each time it is executed.
   494  //
   495  // When Alloc is applied to a channel, map or slice type, it returns
   496  // the address of an uninitialized (nil) reference of that kind; store
   497  // the result of MakeSlice, MakeMap or MakeChan in that location to
   498  // instantiate these types.
   499  //
   500  // Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
   501  // or the ast.CallExpr.Rparen for a call to new() or for a call that
   502  // allocates a varargs slice.
   503  //
   504  // Example printed form:
   505  //
   506  //	t0 = local int
   507  //	t1 = new int
   508  type Alloc struct {
   509  	register
   510  	Comment string
   511  	Heap    bool
   512  	index   int // dense numbering; for lifting
   513  }
   514  
   515  // The Phi instruction represents an SSA φ-node, which combines values
   516  // that differ across incoming control-flow edges and yields a new
   517  // value.  Within a block, all φ-nodes must appear before all non-φ
   518  // nodes.
   519  //
   520  // Pos() returns the position of the && or || for short-circuit
   521  // control-flow joins, or that of the *Alloc for φ-nodes inserted
   522  // during SSA renaming.
   523  //
   524  // Example printed form:
   525  //
   526  //	t2 = phi [0: t0, 1: t1]
   527  type Phi struct {
   528  	register
   529  	Comment string  // a hint as to its purpose
   530  	Edges   []Value // Edges[i] is value for Block().Preds[i]
   531  }
   532  
   533  // The Call instruction represents a function or method call.
   534  //
   535  // The Call instruction yields the function result if there is exactly
   536  // one.  Otherwise it returns a tuple, the components of which are
   537  // accessed via Extract.
   538  //
   539  // See CallCommon for generic function call documentation.
   540  //
   541  // Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
   542  //
   543  // Example printed form:
   544  //
   545  //	t2 = println(t0, t1)
   546  //	t4 = t3()
   547  //	t7 = invoke t5.Println(...t6)
   548  type Call struct {
   549  	register
   550  	Call CallCommon
   551  }
   552  
   553  // The BinOp instruction yields the result of binary operation X Op Y.
   554  //
   555  // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
   556  //
   557  // Example printed form:
   558  //
   559  //	t1 = t0 + 1:int
   560  type BinOp struct {
   561  	register
   562  	// One of:
   563  	// ADD SUB MUL QUO REM          + - * / %
   564  	// AND OR XOR SHL SHR AND_NOT   & | ^ << >> &^
   565  	// EQL NEQ LSS LEQ GTR GEQ      == != < <= < >=
   566  	Op   token.Token
   567  	X, Y Value
   568  }
   569  
   570  // The UnOp instruction yields the result of Op X.
   571  // ARROW is channel receive.
   572  // MUL is pointer indirection (load).
   573  // XOR is bitwise complement.
   574  // SUB is negation.
   575  // NOT is logical negation.
   576  //
   577  // If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
   578  // and a boolean indicating the success of the receive.  The
   579  // components of the tuple are accessed using Extract.
   580  //
   581  // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
   582  // For receive operations (ARROW) implicit in ranging over a channel,
   583  // Pos() returns the ast.RangeStmt.For.
   584  // For implicit memory loads (STAR), Pos() returns the position of the
   585  // most closely associated source-level construct; the details are not
   586  // specified.
   587  //
   588  // Example printed form:
   589  //
   590  //	t0 = *x
   591  //	t2 = <-t1,ok
   592  type UnOp struct {
   593  	register
   594  	Op      token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
   595  	X       Value
   596  	CommaOk bool
   597  }
   598  
   599  // The ChangeType instruction applies to X a value-preserving type
   600  // change to Type().
   601  //
   602  // Type changes are permitted:
   603  //   - between a named type and its underlying type.
   604  //   - between two named types of the same underlying type.
   605  //   - between (possibly named) pointers to identical base types.
   606  //   - from a bidirectional channel to a read- or write-channel,
   607  //     optionally adding/removing a name.
   608  //   - between a type (t) and an instance of the type (tσ), i.e.
   609  //     Type() == σ(X.Type()) (or X.Type()== σ(Type())) where
   610  //     σ is the type substitution of Parent().TypeParams by
   611  //     Parent().TypeArgs.
   612  //
   613  // This operation cannot fail dynamically.
   614  //
   615  // Type changes may to be to or from a type parameter (or both). All
   616  // types in the type set of X.Type() have a value-preserving type
   617  // change to all types in the type set of Type().
   618  //
   619  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   620  // from an explicit conversion in the source.
   621  //
   622  // Example printed form:
   623  //
   624  //	t1 = changetype *int <- IntPtr (t0)
   625  type ChangeType struct {
   626  	register
   627  	X Value
   628  }
   629  
   630  // The Convert instruction yields the conversion of value X to type
   631  // Type().  One or both of those types is basic (but possibly named).
   632  //
   633  // A conversion may change the value and representation of its operand.
   634  // Conversions are permitted:
   635  //   - between real numeric types.
   636  //   - between complex numeric types.
   637  //   - between string and []byte or []rune.
   638  //   - between pointers and unsafe.Pointer.
   639  //   - between unsafe.Pointer and uintptr.
   640  //   - from (Unicode) integer to (UTF-8) string.
   641  //
   642  // A conversion may imply a type name change also.
   643  //
   644  // Conversions may to be to or from a type parameter. All types in
   645  // the type set of X.Type() can be converted to all types in the type
   646  // set of Type().
   647  //
   648  // This operation cannot fail dynamically.
   649  //
   650  // Conversions of untyped string/number/bool constants to a specific
   651  // representation are eliminated during SSA construction.
   652  //
   653  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   654  // from an explicit conversion in the source.
   655  //
   656  // Example printed form:
   657  //
   658  //	t1 = convert []byte <- string (t0)
   659  type Convert struct {
   660  	register
   661  	X Value
   662  }
   663  
   664  // ChangeInterface constructs a value of one interface type from a
   665  // value of another interface type known to be assignable to it.
   666  // This operation cannot fail.
   667  //
   668  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
   669  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
   670  // instruction arose from an explicit e.(T) operation; or token.NoPos
   671  // otherwise.
   672  //
   673  // Example printed form:
   674  //
   675  //	t1 = change interface interface{} <- I (t0)
   676  type ChangeInterface struct {
   677  	register
   678  	X Value
   679  }
   680  
   681  // The SliceToArrayPointer instruction yields the conversion of slice X to
   682  // array pointer.
   683  //
   684  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   685  // from an explicit conversion in the source.
   686  //
   687  // Conversion may to be to or from a type parameter. All types in
   688  // the type set of X.Type() must be a slice types that can be converted to
   689  // all types in the type set of Type() which must all be pointer to array
   690  // types.
   691  //
   692  // Example printed form:
   693  //
   694  //	t1 = slice to array pointer *[4]byte <- []byte (t0)
   695  type SliceToArrayPointer struct {
   696  	register
   697  	X Value
   698  }
   699  
   700  // MakeInterface constructs an instance of an interface type from a
   701  // value of a concrete type.
   702  //
   703  // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
   704  // of X, and Program.MethodValue(m) to find the implementation of a method.
   705  //
   706  // To construct the zero value of an interface type T, use:
   707  //
   708  //	NewConst(constant.MakeNil(), T, pos)
   709  //
   710  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   711  // from an explicit conversion in the source.
   712  //
   713  // Example printed form:
   714  //
   715  //	t1 = make interface{} <- int (42:int)
   716  //	t2 = make Stringer <- t0
   717  type MakeInterface struct {
   718  	register
   719  	X Value
   720  }
   721  
   722  // The MakeClosure instruction yields a closure value whose code is
   723  // Fn and whose free variables' values are supplied by Bindings.
   724  //
   725  // Type() returns a (possibly named) *types.Signature.
   726  //
   727  // Pos() returns the ast.FuncLit.Type.Func for a function literal
   728  // closure or the ast.SelectorExpr.Sel for a bound method closure.
   729  //
   730  // Example printed form:
   731  //
   732  //	t0 = make closure anon@1.2 [x y z]
   733  //	t1 = make closure bound$(main.I).add [i]
   734  type MakeClosure struct {
   735  	register
   736  	Fn       Value   // always a *Function
   737  	Bindings []Value // values for each free variable in Fn.FreeVars
   738  }
   739  
   740  // The MakeMap instruction creates a new hash-table-based map object
   741  // and yields a value of kind map.
   742  //
   743  // Type() returns a (possibly named) *types.Map.
   744  //
   745  // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
   746  // the ast.CompositeLit.Lbrack if created by a literal.
   747  //
   748  // Example printed form:
   749  //
   750  //	t1 = make map[string]int t0
   751  //	t1 = make StringIntMap t0
   752  type MakeMap struct {
   753  	register
   754  	Reserve Value // initial space reservation; nil => default
   755  }
   756  
   757  // The MakeChan instruction creates a new channel object and yields a
   758  // value of kind chan.
   759  //
   760  // Type() returns a (possibly named) *types.Chan.
   761  //
   762  // Pos() returns the ast.CallExpr.Lparen for the make(chan) that
   763  // created it.
   764  //
   765  // Example printed form:
   766  //
   767  //	t0 = make chan int 0
   768  //	t0 = make IntChan 0
   769  type MakeChan struct {
   770  	register
   771  	Size Value // int; size of buffer; zero => synchronous.
   772  }
   773  
   774  // The MakeSlice instruction yields a slice of length Len backed by a
   775  // newly allocated array of length Cap.
   776  //
   777  // Both Len and Cap must be non-nil Values of integer type.
   778  //
   779  // (Alloc(types.Array) followed by Slice will not suffice because
   780  // Alloc can only create arrays of constant length.)
   781  //
   782  // Type() returns a (possibly named) *types.Slice.
   783  //
   784  // Pos() returns the ast.CallExpr.Lparen for the make([]T) that
   785  // created it.
   786  //
   787  // Example printed form:
   788  //
   789  //	t1 = make []string 1:int t0
   790  //	t1 = make StringSlice 1:int t0
   791  type MakeSlice struct {
   792  	register
   793  	Len Value
   794  	Cap Value
   795  }
   796  
   797  // The Slice instruction yields a slice of an existing string, slice
   798  // or *array X between optional integer bounds Low and High.
   799  //
   800  // Dynamically, this instruction panics if X evaluates to a nil *array
   801  // pointer.
   802  //
   803  // Type() returns string if the type of X was string, otherwise a
   804  // *types.Slice with the same element type as X.
   805  //
   806  // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
   807  // operation, the ast.CompositeLit.Lbrace if created by a literal, or
   808  // NoPos if not explicit in the source (e.g. a variadic argument slice).
   809  //
   810  // Example printed form:
   811  //
   812  //	t1 = slice t0[1:]
   813  type Slice struct {
   814  	register
   815  	X              Value // slice, string, or *array
   816  	Low, High, Max Value // each may be nil
   817  }
   818  
   819  // The FieldAddr instruction yields the address of Field of *struct X.
   820  //
   821  // The field is identified by its index within the field list of the
   822  // struct type of X.
   823  //
   824  // Dynamically, this instruction panics if X evaluates to a nil
   825  // pointer.
   826  //
   827  // Type() returns a (possibly named) *types.Pointer.
   828  //
   829  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   830  // field, if explicit in the source. For implicit selections, returns
   831  // the position of the inducing explicit selection. If produced for a
   832  // struct literal S{f: e}, it returns the position of the colon; for
   833  // S{e} it returns the start of expression e.
   834  //
   835  // Example printed form:
   836  //
   837  //	t1 = &t0.name [#1]
   838  type FieldAddr struct {
   839  	register
   840  	X     Value // *struct
   841  	Field int   // field is typeparams.CoreType(X.Type().Underlying().(*types.Pointer).Elem()).(*types.Struct).Field(Field)
   842  }
   843  
   844  // The Field instruction yields the Field of struct X.
   845  //
   846  // The field is identified by its index within the field list of the
   847  // struct type of X; by using numeric indices we avoid ambiguity of
   848  // package-local identifiers and permit compact representations.
   849  //
   850  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   851  // field, if explicit in the source. For implicit selections, returns
   852  // the position of the inducing explicit selection.
   853  
   854  // Example printed form:
   855  //
   856  //	t1 = t0.name [#1]
   857  type Field struct {
   858  	register
   859  	X     Value // struct
   860  	Field int   // index into typeparams.CoreType(X.Type()).(*types.Struct).Fields
   861  }
   862  
   863  // The IndexAddr instruction yields the address of the element at
   864  // index Index of collection X.  Index is an integer expression.
   865  //
   866  // The elements of maps and strings are not addressable; use Lookup (map),
   867  // Index (string), or MapUpdate instead.
   868  //
   869  // Dynamically, this instruction panics if X evaluates to a nil *array
   870  // pointer.
   871  //
   872  // Type() returns a (possibly named) *types.Pointer.
   873  //
   874  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   875  // explicit in the source.
   876  //
   877  // Example printed form:
   878  //
   879  //	t2 = &t0[t1]
   880  type IndexAddr struct {
   881  	register
   882  	X     Value // *array, slice or type parameter with types array, *array, or slice.
   883  	Index Value // numeric index
   884  }
   885  
   886  // The Index instruction yields element Index of collection X, an array,
   887  // string or type parameter containing an array, a string, a pointer to an,
   888  // array or a slice.
   889  //
   890  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   891  // explicit in the source.
   892  //
   893  // Example printed form:
   894  //
   895  //	t2 = t0[t1]
   896  type Index struct {
   897  	register
   898  	X     Value // array, string or type parameter with types array, *array, slice, or string.
   899  	Index Value // integer index
   900  }
   901  
   902  // The Lookup instruction yields element Index of collection map X.
   903  // Index is the appropriate key type.
   904  //
   905  // If CommaOk, the result is a 2-tuple of the value above and a
   906  // boolean indicating the result of a map membership test for the key.
   907  // The components of the tuple are accessed using Extract.
   908  //
   909  // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
   910  //
   911  // Example printed form:
   912  //
   913  //	t2 = t0[t1]
   914  //	t5 = t3[t4],ok
   915  type Lookup struct {
   916  	register
   917  	X       Value // map
   918  	Index   Value // key-typed index
   919  	CommaOk bool  // return a value,ok pair
   920  }
   921  
   922  // SelectState is a helper for Select.
   923  // It represents one goal state and its corresponding communication.
   924  type SelectState struct {
   925  	Dir       types.ChanDir // direction of case (SendOnly or RecvOnly)
   926  	Chan      Value         // channel to use (for send or receive)
   927  	Send      Value         // value to send (for send)
   928  	Pos       token.Pos     // position of token.ARROW
   929  	DebugNode ast.Node      // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
   930  }
   931  
   932  // The Select instruction tests whether (or blocks until) one
   933  // of the specified sent or received states is entered.
   934  //
   935  // Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
   936  // be the element type of each such state's Chan.
   937  // Select returns an n+2-tuple
   938  //
   939  //	(index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
   940  //
   941  // The tuple's components, described below, must be accessed via the
   942  // Extract instruction.
   943  //
   944  // If Blocking, select waits until exactly one state holds, i.e. a
   945  // channel becomes ready for the designated operation of sending or
   946  // receiving; select chooses one among the ready states
   947  // pseudorandomly, performs the send or receive operation, and sets
   948  // 'index' to the index of the chosen channel.
   949  //
   950  // If !Blocking, select doesn't block if no states hold; instead it
   951  // returns immediately with index equal to -1.
   952  //
   953  // If the chosen channel was used for a receive, the r_i component is
   954  // set to the received value, where i is the index of that state among
   955  // all n receive states; otherwise r_i has the zero value of type T_i.
   956  // Note that the receive index i is not the same as the state
   957  // index index.
   958  //
   959  // The second component of the triple, recvOk, is a boolean whose value
   960  // is true iff the selected operation was a receive and the receive
   961  // successfully yielded a value.
   962  //
   963  // Pos() returns the ast.SelectStmt.Select.
   964  //
   965  // Example printed form:
   966  //
   967  //	t3 = select nonblocking [<-t0, t1<-t2]
   968  //	t4 = select blocking []
   969  type Select struct {
   970  	register
   971  	States   []*SelectState
   972  	Blocking bool
   973  }
   974  
   975  // The Range instruction yields an iterator over the domain and range
   976  // of X, which must be a string or map.
   977  //
   978  // Elements are accessed via Next.
   979  //
   980  // Type() returns an opaque and degenerate "rangeIter" type.
   981  //
   982  // Pos() returns the ast.RangeStmt.For.
   983  //
   984  // Example printed form:
   985  //
   986  //	t0 = range "hello":string
   987  type Range struct {
   988  	register
   989  	X Value // string or map
   990  }
   991  
   992  // The Next instruction reads and advances the (map or string)
   993  // iterator Iter and returns a 3-tuple value (ok, k, v).  If the
   994  // iterator is not exhausted, ok is true and k and v are the next
   995  // elements of the domain and range, respectively.  Otherwise ok is
   996  // false and k and v are undefined.
   997  //
   998  // Components of the tuple are accessed using Extract.
   999  //
  1000  // The IsString field distinguishes iterators over strings from those
  1001  // over maps, as the Type() alone is insufficient: consider
  1002  // map[int]rune.
  1003  //
  1004  // Type() returns a *types.Tuple for the triple (ok, k, v).
  1005  // The types of k and/or v may be types.Invalid.
  1006  //
  1007  // Example printed form:
  1008  //
  1009  //	t1 = next t0
  1010  type Next struct {
  1011  	register
  1012  	Iter     Value
  1013  	IsString bool // true => string iterator; false => map iterator.
  1014  }
  1015  
  1016  // The TypeAssert instruction tests whether interface value X has type
  1017  // AssertedType.
  1018  //
  1019  // If !CommaOk, on success it returns v, the result of the conversion
  1020  // (defined below); on failure it panics.
  1021  //
  1022  // If CommaOk: on success it returns a pair (v, true) where v is the
  1023  // result of the conversion; on failure it returns (z, false) where z
  1024  // is AssertedType's zero value.  The components of the pair must be
  1025  // accessed using the Extract instruction.
  1026  //
  1027  // If AssertedType is a concrete type, TypeAssert checks whether the
  1028  // dynamic type in interface X is equal to it, and if so, the result
  1029  // of the conversion is a copy of the value in the interface.
  1030  //
  1031  // If AssertedType is an interface, TypeAssert checks whether the
  1032  // dynamic type of the interface is assignable to it, and if so, the
  1033  // result of the conversion is a copy of the interface value X.
  1034  // If AssertedType is a superinterface of X.Type(), the operation will
  1035  // fail iff the operand is nil.  (Contrast with ChangeInterface, which
  1036  // performs no nil-check.)
  1037  //
  1038  // Type() reflects the actual type of the result, possibly a
  1039  // 2-types.Tuple; AssertedType is the asserted type.
  1040  //
  1041  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
  1042  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
  1043  // instruction arose from an explicit e.(T) operation; or the
  1044  // ast.CaseClause.Case if the instruction arose from a case of a
  1045  // type-switch statement.
  1046  //
  1047  // Example printed form:
  1048  //
  1049  //	t1 = typeassert t0.(int)
  1050  //	t3 = typeassert,ok t2.(T)
  1051  type TypeAssert struct {
  1052  	register
  1053  	X            Value
  1054  	AssertedType types.Type
  1055  	CommaOk      bool
  1056  }
  1057  
  1058  // The Extract instruction yields component Index of Tuple.
  1059  //
  1060  // This is used to access the results of instructions with multiple
  1061  // return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
  1062  // IndexExpr(Map).
  1063  //
  1064  // Example printed form:
  1065  //
  1066  //	t1 = extract t0 #1
  1067  type Extract struct {
  1068  	register
  1069  	Tuple Value
  1070  	Index int
  1071  }
  1072  
  1073  // Instructions executed for effect.  They do not yield a value. --------------------
  1074  
  1075  // The Jump instruction transfers control to the sole successor of its
  1076  // owning block.
  1077  //
  1078  // A Jump must be the last instruction of its containing BasicBlock.
  1079  //
  1080  // Pos() returns NoPos.
  1081  //
  1082  // Example printed form:
  1083  //
  1084  //	jump done
  1085  type Jump struct {
  1086  	anInstruction
  1087  }
  1088  
  1089  // The If instruction transfers control to one of the two successors
  1090  // of its owning block, depending on the boolean Cond: the first if
  1091  // true, the second if false.
  1092  //
  1093  // An If instruction must be the last instruction of its containing
  1094  // BasicBlock.
  1095  //
  1096  // Pos() returns NoPos.
  1097  //
  1098  // Example printed form:
  1099  //
  1100  //	if t0 goto done else body
  1101  type If struct {
  1102  	anInstruction
  1103  	Cond Value
  1104  }
  1105  
  1106  // The Return instruction returns values and control back to the calling
  1107  // function.
  1108  //
  1109  // len(Results) is always equal to the number of results in the
  1110  // function's signature.
  1111  //
  1112  // If len(Results) > 1, Return returns a tuple value with the specified
  1113  // components which the caller must access using Extract instructions.
  1114  //
  1115  // There is no instruction to return a ready-made tuple like those
  1116  // returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
  1117  // a tail-call to a function with multiple result parameters.
  1118  //
  1119  // Return must be the last instruction of its containing BasicBlock.
  1120  // Such a block has no successors.
  1121  //
  1122  // Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
  1123  //
  1124  // Example printed form:
  1125  //
  1126  //	return
  1127  //	return nil:I, 2:int
  1128  type Return struct {
  1129  	anInstruction
  1130  	Results []Value
  1131  	pos     token.Pos
  1132  }
  1133  
  1134  // The RunDefers instruction pops and invokes the entire stack of
  1135  // procedure calls pushed by Defer instructions in this function.
  1136  //
  1137  // It is legal to encounter multiple 'rundefers' instructions in a
  1138  // single control-flow path through a function; this is useful in
  1139  // the combined init() function, for example.
  1140  //
  1141  // Pos() returns NoPos.
  1142  //
  1143  // Example printed form:
  1144  //
  1145  //	rundefers
  1146  type RunDefers struct {
  1147  	anInstruction
  1148  }
  1149  
  1150  // The Panic instruction initiates a panic with value X.
  1151  //
  1152  // A Panic instruction must be the last instruction of its containing
  1153  // BasicBlock, which must have no successors.
  1154  //
  1155  // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
  1156  // they are treated as calls to a built-in function.
  1157  //
  1158  // Pos() returns the ast.CallExpr.Lparen if this panic was explicit
  1159  // in the source.
  1160  //
  1161  // Example printed form:
  1162  //
  1163  //	panic t0
  1164  type Panic struct {
  1165  	anInstruction
  1166  	X   Value // an interface{}
  1167  	pos token.Pos
  1168  }
  1169  
  1170  // The Go instruction creates a new goroutine and calls the specified
  1171  // function within it.
  1172  //
  1173  // See CallCommon for generic function call documentation.
  1174  //
  1175  // Pos() returns the ast.GoStmt.Go.
  1176  //
  1177  // Example printed form:
  1178  //
  1179  //	go println(t0, t1)
  1180  //	go t3()
  1181  //	go invoke t5.Println(...t6)
  1182  type Go struct {
  1183  	anInstruction
  1184  	Call CallCommon
  1185  	pos  token.Pos
  1186  }
  1187  
  1188  // The Defer instruction pushes the specified call onto a stack of
  1189  // functions to be called by a RunDefers instruction or by a panic.
  1190  //
  1191  // See CallCommon for generic function call documentation.
  1192  //
  1193  // Pos() returns the ast.DeferStmt.Defer.
  1194  //
  1195  // Example printed form:
  1196  //
  1197  //	defer println(t0, t1)
  1198  //	defer t3()
  1199  //	defer invoke t5.Println(...t6)
  1200  type Defer struct {
  1201  	anInstruction
  1202  	Call CallCommon
  1203  	pos  token.Pos
  1204  }
  1205  
  1206  // The Send instruction sends X on channel Chan.
  1207  //
  1208  // Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
  1209  //
  1210  // Example printed form:
  1211  //
  1212  //	send t0 <- t1
  1213  type Send struct {
  1214  	anInstruction
  1215  	Chan, X Value
  1216  	pos     token.Pos
  1217  }
  1218  
  1219  // The Store instruction stores Val at address Addr.
  1220  // Stores can be of arbitrary types.
  1221  //
  1222  // Pos() returns the position of the source-level construct most closely
  1223  // associated with the memory store operation.
  1224  // Since implicit memory stores are numerous and varied and depend upon
  1225  // implementation choices, the details are not specified.
  1226  //
  1227  // Example printed form:
  1228  //
  1229  //	*x = y
  1230  type Store struct {
  1231  	anInstruction
  1232  	Addr Value
  1233  	Val  Value
  1234  	pos  token.Pos
  1235  }
  1236  
  1237  // The MapUpdate instruction updates the association of Map[Key] to
  1238  // Value.
  1239  //
  1240  // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
  1241  // if explicit in the source.
  1242  //
  1243  // Example printed form:
  1244  //
  1245  //	t0[t1] = t2
  1246  type MapUpdate struct {
  1247  	anInstruction
  1248  	Map   Value
  1249  	Key   Value
  1250  	Value Value
  1251  	pos   token.Pos
  1252  }
  1253  
  1254  // A DebugRef instruction maps a source-level expression Expr to the
  1255  // SSA value X that represents the value (!IsAddr) or address (IsAddr)
  1256  // of that expression.
  1257  //
  1258  // DebugRef is a pseudo-instruction: it has no dynamic effect.
  1259  //
  1260  // Pos() returns Expr.Pos(), the start position of the source-level
  1261  // expression.  This is not the same as the "designated" token as
  1262  // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
  1263  // position of the ("designated") Lparen token.
  1264  //
  1265  // If Expr is an *ast.Ident denoting a var or func, Object() returns
  1266  // the object; though this information can be obtained from the type
  1267  // checker, including it here greatly facilitates debugging.
  1268  // For non-Ident expressions, Object() returns nil.
  1269  //
  1270  // DebugRefs are generated only for functions built with debugging
  1271  // enabled; see Package.SetDebugMode() and the GlobalDebug builder
  1272  // mode flag.
  1273  //
  1274  // DebugRefs are not emitted for ast.Idents referring to constants or
  1275  // predeclared identifiers, since they are trivial and numerous.
  1276  // Nor are they emitted for ast.ParenExprs.
  1277  //
  1278  // (By representing these as instructions, rather than out-of-band,
  1279  // consistency is maintained during transformation passes by the
  1280  // ordinary SSA renaming machinery.)
  1281  //
  1282  // Example printed form:
  1283  //
  1284  //	; *ast.CallExpr @ 102:9 is t5
  1285  //	; var x float64 @ 109:72 is x
  1286  //	; address of *ast.CompositeLit @ 216:10 is t0
  1287  type DebugRef struct {
  1288  	// TODO(generics): Reconsider what DebugRefs are for generics.
  1289  	anInstruction
  1290  	Expr   ast.Expr     // the referring expression (never *ast.ParenExpr)
  1291  	object types.Object // the identity of the source var/func
  1292  	IsAddr bool         // Expr is addressable and X is the address it denotes
  1293  	X      Value        // the value or address of Expr
  1294  }
  1295  
  1296  // Embeddable mix-ins and helpers for common parts of other structs. -----------
  1297  
  1298  // register is a mix-in embedded by all SSA values that are also
  1299  // instructions, i.e. virtual registers, and provides a uniform
  1300  // implementation of most of the Value interface: Value.Name() is a
  1301  // numbered register (e.g. "t0"); the other methods are field accessors.
  1302  //
  1303  // Temporary names are automatically assigned to each register on
  1304  // completion of building a function in SSA form.
  1305  //
  1306  // Clients must not assume that the 'id' value (and the Name() derived
  1307  // from it) is unique within a function.  As always in this API,
  1308  // semantics are determined only by identity; names exist only to
  1309  // facilitate debugging.
  1310  type register struct {
  1311  	anInstruction
  1312  	num       int        // "name" of virtual register, e.g. "t0".  Not guaranteed unique.
  1313  	typ       types.Type // type of virtual register
  1314  	pos       token.Pos  // position of source expression, or NoPos
  1315  	referrers []Instruction
  1316  }
  1317  
  1318  // anInstruction is a mix-in embedded by all Instructions.
  1319  // It provides the implementations of the Block and setBlock methods.
  1320  type anInstruction struct {
  1321  	block *BasicBlock // the basic block of this instruction
  1322  }
  1323  
  1324  // CallCommon is contained by Go, Defer and Call to hold the
  1325  // common parts of a function or method call.
  1326  //
  1327  // Each CallCommon exists in one of two modes, function call and
  1328  // interface method invocation, or "call" and "invoke" for short.
  1329  //
  1330  // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
  1331  // represents an ordinary function call of the value in Value,
  1332  // which may be a *Builtin, a *Function or any other value of kind
  1333  // 'func'.
  1334  //
  1335  // Value may be one of:
  1336  //
  1337  //	(a) a *Function, indicating a statically dispatched call
  1338  //	    to a package-level function, an anonymous function, or
  1339  //	    a method of a named type.
  1340  //	(b) a *MakeClosure, indicating an immediately applied
  1341  //	    function literal with free variables.
  1342  //	(c) a *Builtin, indicating a statically dispatched call
  1343  //	    to a built-in function.
  1344  //	(d) any other value, indicating a dynamically dispatched
  1345  //	    function call.
  1346  //
  1347  // StaticCallee returns the identity of the callee in cases
  1348  // (a) and (b), nil otherwise.
  1349  //
  1350  // Args contains the arguments to the call.  If Value is a method,
  1351  // Args[0] contains the receiver parameter.
  1352  //
  1353  // Example printed form:
  1354  //
  1355  //	t2 = println(t0, t1)
  1356  //	go t3()
  1357  //	defer t5(...t6)
  1358  //
  1359  // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
  1360  // represents a dynamically dispatched call to an interface method.
  1361  // In this mode, Value is the interface value and Method is the
  1362  // interface's abstract method. The interface value may be a type
  1363  // parameter. Note: an abstract method may be shared by multiple
  1364  // interfaces due to embedding; Value.Type() provides the specific
  1365  // interface used for this call.
  1366  //
  1367  // Value is implicitly supplied to the concrete method implementation
  1368  // as the receiver parameter; in other words, Args[0] holds not the
  1369  // receiver but the first true argument.
  1370  //
  1371  // Example printed form:
  1372  //
  1373  //	t1 = invoke t0.String()
  1374  //	go invoke t3.Run(t2)
  1375  //	defer invoke t4.Handle(...t5)
  1376  //
  1377  // For all calls to variadic functions (Signature().Variadic()),
  1378  // the last element of Args is a slice.
  1379  type CallCommon struct {
  1380  	Value  Value       // receiver (invoke mode) or func value (call mode)
  1381  	Method *types.Func // abstract method (invoke mode)
  1382  	Args   []Value     // actual parameters (in static method call, includes receiver)
  1383  	pos    token.Pos   // position of CallExpr.Lparen, iff explicit in source
  1384  }
  1385  
  1386  // IsInvoke returns true if this call has "invoke" (not "call") mode.
  1387  func (c *CallCommon) IsInvoke() bool {
  1388  	return c.Method != nil
  1389  }
  1390  
  1391  func (c *CallCommon) Pos() token.Pos { return c.pos }
  1392  
  1393  // Signature returns the signature of the called function.
  1394  //
  1395  // For an "invoke"-mode call, the signature of the interface method is
  1396  // returned.
  1397  //
  1398  // In either "call" or "invoke" mode, if the callee is a method, its
  1399  // receiver is represented by sig.Recv, not sig.Params().At(0).
  1400  func (c *CallCommon) Signature() *types.Signature {
  1401  	if c.Method != nil {
  1402  		return c.Method.Type().(*types.Signature)
  1403  	}
  1404  	return typeparams.CoreType(c.Value.Type()).(*types.Signature)
  1405  }
  1406  
  1407  // StaticCallee returns the callee if this is a trivially static
  1408  // "call"-mode call to a function.
  1409  func (c *CallCommon) StaticCallee() *Function {
  1410  	switch fn := c.Value.(type) {
  1411  	case *Function:
  1412  		return fn
  1413  	case *MakeClosure:
  1414  		return fn.Fn.(*Function)
  1415  	}
  1416  	return nil
  1417  }
  1418  
  1419  // Description returns a description of the mode of this call suitable
  1420  // for a user interface, e.g., "static method call".
  1421  func (c *CallCommon) Description() string {
  1422  	switch fn := c.Value.(type) {
  1423  	case *Builtin:
  1424  		return "built-in function call"
  1425  	case *MakeClosure:
  1426  		return "static function closure call"
  1427  	case *Function:
  1428  		if fn.Signature.Recv() != nil {
  1429  			return "static method call"
  1430  		}
  1431  		return "static function call"
  1432  	}
  1433  	if c.IsInvoke() {
  1434  		return "dynamic method call" // ("invoke" mode)
  1435  	}
  1436  	return "dynamic function call"
  1437  }
  1438  
  1439  // The CallInstruction interface, implemented by *Go, *Defer and *Call,
  1440  // exposes the common parts of function-calling instructions,
  1441  // yet provides a way back to the Value defined by *Call alone.
  1442  type CallInstruction interface {
  1443  	Instruction
  1444  	Common() *CallCommon // returns the common parts of the call
  1445  	Value() *Call        // returns the result value of the call (*Call) or nil (*Go, *Defer)
  1446  }
  1447  
  1448  func (s *Call) Common() *CallCommon  { return &s.Call }
  1449  func (s *Defer) Common() *CallCommon { return &s.Call }
  1450  func (s *Go) Common() *CallCommon    { return &s.Call }
  1451  
  1452  func (s *Call) Value() *Call  { return s }
  1453  func (s *Defer) Value() *Call { return nil }
  1454  func (s *Go) Value() *Call    { return nil }
  1455  
  1456  func (v *Builtin) Type() types.Type        { return v.sig }
  1457  func (v *Builtin) Name() string            { return v.name }
  1458  func (*Builtin) Referrers() *[]Instruction { return nil }
  1459  func (v *Builtin) Pos() token.Pos          { return token.NoPos }
  1460  func (v *Builtin) Object() types.Object    { return types.Universe.Lookup(v.name) }
  1461  func (v *Builtin) Parent() *Function       { return nil }
  1462  
  1463  func (v *FreeVar) Type() types.Type          { return v.typ }
  1464  func (v *FreeVar) Name() string              { return v.name }
  1465  func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
  1466  func (v *FreeVar) Pos() token.Pos            { return v.pos }
  1467  func (v *FreeVar) Parent() *Function         { return v.parent }
  1468  
  1469  func (v *Global) Type() types.Type                     { return v.typ }
  1470  func (v *Global) Name() string                         { return v.name }
  1471  func (v *Global) Parent() *Function                    { return nil }
  1472  func (v *Global) Pos() token.Pos                       { return v.pos }
  1473  func (v *Global) Referrers() *[]Instruction            { return nil }
  1474  func (v *Global) Token() token.Token                   { return token.VAR }
  1475  func (v *Global) Object() types.Object                 { return v.object }
  1476  func (v *Global) String() string                       { return v.RelString(nil) }
  1477  func (v *Global) Package() *Package                    { return v.Pkg }
  1478  func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
  1479  
  1480  func (v *Function) Name() string         { return v.name }
  1481  func (v *Function) Type() types.Type     { return v.Signature }
  1482  func (v *Function) Pos() token.Pos       { return v.pos }
  1483  func (v *Function) Token() token.Token   { return token.FUNC }
  1484  func (v *Function) Object() types.Object { return v.object }
  1485  func (v *Function) String() string       { return v.RelString(nil) }
  1486  func (v *Function) Package() *Package    { return v.Pkg }
  1487  func (v *Function) Parent() *Function    { return v.parent }
  1488  func (v *Function) Referrers() *[]Instruction {
  1489  	if v.parent != nil {
  1490  		return &v.referrers
  1491  	}
  1492  	return nil
  1493  }
  1494  
  1495  // TypeParams are the function's type parameters if generic or the
  1496  // type parameters that were instantiated if fn is an instantiation.
  1497  //
  1498  // TODO(taking): declare result type as *types.TypeParamList
  1499  // after we drop support for go1.17.
  1500  func (fn *Function) TypeParams() *typeparams.TypeParamList {
  1501  	return fn.typeparams
  1502  }
  1503  
  1504  // TypeArgs are the types that TypeParams() were instantiated by to create fn
  1505  // from fn.Origin().
  1506  func (fn *Function) TypeArgs() []types.Type { return fn.typeargs }
  1507  
  1508  // Origin is the function fn is an instantiation of. Returns nil if fn is not
  1509  // an instantiation.
  1510  func (fn *Function) Origin() *Function {
  1511  	if fn.parent != nil && len(fn.typeargs) > 0 {
  1512  		// Nested functions are BUILT at a different time than there instances.
  1513  		return fn.parent.Origin().AnonFuncs[fn.anonIdx]
  1514  	}
  1515  	return fn.topLevelOrigin
  1516  }
  1517  
  1518  func (v *Parameter) Type() types.Type          { return v.typ }
  1519  func (v *Parameter) Name() string              { return v.name }
  1520  func (v *Parameter) Object() types.Object      { return v.object }
  1521  func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
  1522  func (v *Parameter) Pos() token.Pos            { return v.pos }
  1523  func (v *Parameter) Parent() *Function         { return v.parent }
  1524  
  1525  func (v *Alloc) Type() types.Type          { return v.typ }
  1526  func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
  1527  func (v *Alloc) Pos() token.Pos            { return v.pos }
  1528  
  1529  func (v *register) Type() types.Type          { return v.typ }
  1530  func (v *register) setType(typ types.Type)    { v.typ = typ }
  1531  func (v *register) Name() string              { return fmt.Sprintf("t%d", v.num) }
  1532  func (v *register) setNum(num int)            { v.num = num }
  1533  func (v *register) Referrers() *[]Instruction { return &v.referrers }
  1534  func (v *register) Pos() token.Pos            { return v.pos }
  1535  func (v *register) setPos(pos token.Pos)      { v.pos = pos }
  1536  
  1537  func (v *anInstruction) Parent() *Function          { return v.block.parent }
  1538  func (v *anInstruction) Block() *BasicBlock         { return v.block }
  1539  func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
  1540  func (v *anInstruction) Referrers() *[]Instruction  { return nil }
  1541  
  1542  func (t *Type) Name() string                         { return t.object.Name() }
  1543  func (t *Type) Pos() token.Pos                       { return t.object.Pos() }
  1544  func (t *Type) Type() types.Type                     { return t.object.Type() }
  1545  func (t *Type) Token() token.Token                   { return token.TYPE }
  1546  func (t *Type) Object() types.Object                 { return t.object }
  1547  func (t *Type) String() string                       { return t.RelString(nil) }
  1548  func (t *Type) Package() *Package                    { return t.pkg }
  1549  func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
  1550  
  1551  func (c *NamedConst) Name() string                         { return c.object.Name() }
  1552  func (c *NamedConst) Pos() token.Pos                       { return c.object.Pos() }
  1553  func (c *NamedConst) String() string                       { return c.RelString(nil) }
  1554  func (c *NamedConst) Type() types.Type                     { return c.object.Type() }
  1555  func (c *NamedConst) Token() token.Token                   { return token.CONST }
  1556  func (c *NamedConst) Object() types.Object                 { return c.object }
  1557  func (c *NamedConst) Package() *Package                    { return c.pkg }
  1558  func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
  1559  
  1560  func (d *DebugRef) Object() types.Object { return d.object }
  1561  
  1562  // Func returns the package-level function of the specified name,
  1563  // or nil if not found.
  1564  func (p *Package) Func(name string) (f *Function) {
  1565  	f, _ = p.Members[name].(*Function)
  1566  	return
  1567  }
  1568  
  1569  // Var returns the package-level variable of the specified name,
  1570  // or nil if not found.
  1571  func (p *Package) Var(name string) (g *Global) {
  1572  	g, _ = p.Members[name].(*Global)
  1573  	return
  1574  }
  1575  
  1576  // Const returns the package-level constant of the specified name,
  1577  // or nil if not found.
  1578  func (p *Package) Const(name string) (c *NamedConst) {
  1579  	c, _ = p.Members[name].(*NamedConst)
  1580  	return
  1581  }
  1582  
  1583  // Type returns the package-level type of the specified name,
  1584  // or nil if not found.
  1585  func (p *Package) Type(name string) (t *Type) {
  1586  	t, _ = p.Members[name].(*Type)
  1587  	return
  1588  }
  1589  
  1590  func (v *Call) Pos() token.Pos      { return v.Call.pos }
  1591  func (s *Defer) Pos() token.Pos     { return s.pos }
  1592  func (s *Go) Pos() token.Pos        { return s.pos }
  1593  func (s *MapUpdate) Pos() token.Pos { return s.pos }
  1594  func (s *Panic) Pos() token.Pos     { return s.pos }
  1595  func (s *Return) Pos() token.Pos    { return s.pos }
  1596  func (s *Send) Pos() token.Pos      { return s.pos }
  1597  func (s *Store) Pos() token.Pos     { return s.pos }
  1598  func (s *If) Pos() token.Pos        { return token.NoPos }
  1599  func (s *Jump) Pos() token.Pos      { return token.NoPos }
  1600  func (s *RunDefers) Pos() token.Pos { return token.NoPos }
  1601  func (s *DebugRef) Pos() token.Pos  { return s.Expr.Pos() }
  1602  
  1603  // Operands.
  1604  
  1605  func (v *Alloc) Operands(rands []*Value) []*Value {
  1606  	return rands
  1607  }
  1608  
  1609  func (v *BinOp) Operands(rands []*Value) []*Value {
  1610  	return append(rands, &v.X, &v.Y)
  1611  }
  1612  
  1613  func (c *CallCommon) Operands(rands []*Value) []*Value {
  1614  	rands = append(rands, &c.Value)
  1615  	for i := range c.Args {
  1616  		rands = append(rands, &c.Args[i])
  1617  	}
  1618  	return rands
  1619  }
  1620  
  1621  func (s *Go) Operands(rands []*Value) []*Value {
  1622  	return s.Call.Operands(rands)
  1623  }
  1624  
  1625  func (s *Call) Operands(rands []*Value) []*Value {
  1626  	return s.Call.Operands(rands)
  1627  }
  1628  
  1629  func (s *Defer) Operands(rands []*Value) []*Value {
  1630  	return s.Call.Operands(rands)
  1631  }
  1632  
  1633  func (v *ChangeInterface) Operands(rands []*Value) []*Value {
  1634  	return append(rands, &v.X)
  1635  }
  1636  
  1637  func (v *ChangeType) Operands(rands []*Value) []*Value {
  1638  	return append(rands, &v.X)
  1639  }
  1640  
  1641  func (v *Convert) Operands(rands []*Value) []*Value {
  1642  	return append(rands, &v.X)
  1643  }
  1644  
  1645  func (v *SliceToArrayPointer) Operands(rands []*Value) []*Value {
  1646  	return append(rands, &v.X)
  1647  }
  1648  
  1649  func (s *DebugRef) Operands(rands []*Value) []*Value {
  1650  	return append(rands, &s.X)
  1651  }
  1652  
  1653  func (v *Extract) Operands(rands []*Value) []*Value {
  1654  	return append(rands, &v.Tuple)
  1655  }
  1656  
  1657  func (v *Field) Operands(rands []*Value) []*Value {
  1658  	return append(rands, &v.X)
  1659  }
  1660  
  1661  func (v *FieldAddr) Operands(rands []*Value) []*Value {
  1662  	return append(rands, &v.X)
  1663  }
  1664  
  1665  func (s *If) Operands(rands []*Value) []*Value {
  1666  	return append(rands, &s.Cond)
  1667  }
  1668  
  1669  func (v *Index) Operands(rands []*Value) []*Value {
  1670  	return append(rands, &v.X, &v.Index)
  1671  }
  1672  
  1673  func (v *IndexAddr) Operands(rands []*Value) []*Value {
  1674  	return append(rands, &v.X, &v.Index)
  1675  }
  1676  
  1677  func (*Jump) Operands(rands []*Value) []*Value {
  1678  	return rands
  1679  }
  1680  
  1681  func (v *Lookup) Operands(rands []*Value) []*Value {
  1682  	return append(rands, &v.X, &v.Index)
  1683  }
  1684  
  1685  func (v *MakeChan) Operands(rands []*Value) []*Value {
  1686  	return append(rands, &v.Size)
  1687  }
  1688  
  1689  func (v *MakeClosure) Operands(rands []*Value) []*Value {
  1690  	rands = append(rands, &v.Fn)
  1691  	for i := range v.Bindings {
  1692  		rands = append(rands, &v.Bindings[i])
  1693  	}
  1694  	return rands
  1695  }
  1696  
  1697  func (v *MakeInterface) Operands(rands []*Value) []*Value {
  1698  	return append(rands, &v.X)
  1699  }
  1700  
  1701  func (v *MakeMap) Operands(rands []*Value) []*Value {
  1702  	return append(rands, &v.Reserve)
  1703  }
  1704  
  1705  func (v *MakeSlice) Operands(rands []*Value) []*Value {
  1706  	return append(rands, &v.Len, &v.Cap)
  1707  }
  1708  
  1709  func (v *MapUpdate) Operands(rands []*Value) []*Value {
  1710  	return append(rands, &v.Map, &v.Key, &v.Value)
  1711  }
  1712  
  1713  func (v *Next) Operands(rands []*Value) []*Value {
  1714  	return append(rands, &v.Iter)
  1715  }
  1716  
  1717  func (s *Panic) Operands(rands []*Value) []*Value {
  1718  	return append(rands, &s.X)
  1719  }
  1720  
  1721  func (v *Phi) Operands(rands []*Value) []*Value {
  1722  	for i := range v.Edges {
  1723  		rands = append(rands, &v.Edges[i])
  1724  	}
  1725  	return rands
  1726  }
  1727  
  1728  func (v *Range) Operands(rands []*Value) []*Value {
  1729  	return append(rands, &v.X)
  1730  }
  1731  
  1732  func (s *Return) Operands(rands []*Value) []*Value {
  1733  	for i := range s.Results {
  1734  		rands = append(rands, &s.Results[i])
  1735  	}
  1736  	return rands
  1737  }
  1738  
  1739  func (*RunDefers) Operands(rands []*Value) []*Value {
  1740  	return rands
  1741  }
  1742  
  1743  func (v *Select) Operands(rands []*Value) []*Value {
  1744  	for i := range v.States {
  1745  		rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
  1746  	}
  1747  	return rands
  1748  }
  1749  
  1750  func (s *Send) Operands(rands []*Value) []*Value {
  1751  	return append(rands, &s.Chan, &s.X)
  1752  }
  1753  
  1754  func (v *Slice) Operands(rands []*Value) []*Value {
  1755  	return append(rands, &v.X, &v.Low, &v.High, &v.Max)
  1756  }
  1757  
  1758  func (s *Store) Operands(rands []*Value) []*Value {
  1759  	return append(rands, &s.Addr, &s.Val)
  1760  }
  1761  
  1762  func (v *TypeAssert) Operands(rands []*Value) []*Value {
  1763  	return append(rands, &v.X)
  1764  }
  1765  
  1766  func (v *UnOp) Operands(rands []*Value) []*Value {
  1767  	return append(rands, &v.X)
  1768  }
  1769  
  1770  // Non-Instruction Values:
  1771  func (v *Builtin) Operands(rands []*Value) []*Value   { return rands }
  1772  func (v *FreeVar) Operands(rands []*Value) []*Value   { return rands }
  1773  func (v *Const) Operands(rands []*Value) []*Value     { return rands }
  1774  func (v *Function) Operands(rands []*Value) []*Value  { return rands }
  1775  func (v *Global) Operands(rands []*Value) []*Value    { return rands }
  1776  func (v *Parameter) Operands(rands []*Value) []*Value { return rands }
  1777  

View as plain text