// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa // Helpers for emitting SSA instructions. import ( "fmt" "go/ast" "go/token" "go/types" "golang.org/x/tools/internal/typeparams" ) // emitNew emits to f a new (heap Alloc) instruction allocating an // object of type typ. pos is the optional source location. func emitNew(f *Function, typ types.Type, pos token.Pos) *Alloc { v := &Alloc{Heap: true} v.setType(types.NewPointer(typ)) v.setPos(pos) f.emit(v) return v } // emitLoad emits to f an instruction to load the address addr into a // new temporary, and returns the value so defined. func emitLoad(f *Function, addr Value) *UnOp { v := &UnOp{Op: token.MUL, X: addr} v.setType(deref(typeparams.CoreType(addr.Type()))) f.emit(v) return v } // emitDebugRef emits to f a DebugRef pseudo-instruction associating // expression e with value v. func emitDebugRef(f *Function, e ast.Expr, v Value, isAddr bool) { if !f.debugInfo() { return // debugging not enabled } if v == nil || e == nil { panic("nil") } var obj types.Object e = unparen(e) if id, ok := e.(*ast.Ident); ok { if isBlankIdent(id) { return } obj = f.objectOf(id) switch obj.(type) { case *types.Nil, *types.Const, *types.Builtin: return } } f.emit(&DebugRef{ X: v, Expr: e, IsAddr: isAddr, object: obj, }) } // emitArith emits to f code to compute the binary operation op(x, y) // where op is an eager shift, logical or arithmetic operation. // (Use emitCompare() for comparisons and Builder.logicalBinop() for // non-eager operations.) func emitArith(f *Function, op token.Token, x, y Value, t types.Type, pos token.Pos) Value { switch op { case token.SHL, token.SHR: x = emitConv(f, x, t) // y may be signed or an 'untyped' constant. // There is a runtime panic if y is signed and <0. Instead of inserting a check for y<0 // and converting to an unsigned value (like the compiler) leave y as is. if isUntyped(y.Type().Underlying()) { // Untyped conversion: // Spec https://go.dev/ref/spec#Operators: // The right operand in a shift expression must have integer type or be an untyped constant // representable by a value of type uint. y = emitConv(f, y, types.Typ[types.Uint]) } case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT: x = emitConv(f, x, t) y = emitConv(f, y, t) default: panic("illegal op in emitArith: " + op.String()) } v := &BinOp{ Op: op, X: x, Y: y, } v.setPos(pos) v.setType(t) return f.emit(v) } // emitCompare emits to f code compute the boolean result of // comparison comparison 'x op y'. func emitCompare(f *Function, op token.Token, x, y Value, pos token.Pos) Value { xt := x.Type().Underlying() yt := y.Type().Underlying() // Special case to optimise a tagless SwitchStmt so that // these are equivalent // switch { case e: ...} // switch true { case e: ... } // if e==true { ... } // even in the case when e's type is an interface. // TODO(adonovan): opt: generalise to x==true, false!=y, etc. if x == vTrue && op == token.EQL { if yt, ok := yt.(*types.Basic); ok && yt.Info()&types.IsBoolean != 0 { return y } } if types.Identical(xt, yt) { // no conversion necessary } else if isNonTypeParamInterface(x.Type()) { y = emitConv(f, y, x.Type()) } else if isNonTypeParamInterface(y.Type()) { x = emitConv(f, x, y.Type()) } else if _, ok := x.(*Const); ok { x = emitConv(f, x, y.Type()) } else if _, ok := y.(*Const); ok { y = emitConv(f, y, x.Type()) } else { // other cases, e.g. channels. No-op. } v := &BinOp{ Op: op, X: x, Y: y, } v.setPos(pos) v.setType(tBool) return f.emit(v) } // isValuePreserving returns true if a conversion from ut_src to // ut_dst is value-preserving, i.e. just a change of type. // Precondition: neither argument is a named type. func isValuePreserving(ut_src, ut_dst types.Type) bool { // Identical underlying types? if structTypesIdentical(ut_dst, ut_src) { return true } switch ut_dst.(type) { case *types.Chan: // Conversion between channel types? _, ok := ut_src.(*types.Chan) return ok case *types.Pointer: // Conversion between pointers with identical base types? _, ok := ut_src.(*types.Pointer) return ok } return false } // isSliceToArrayPointer reports whether ut_src is a slice type // that can be converted to a pointer to an array type ut_dst. // Precondition: neither argument is a named type. func isSliceToArrayPointer(ut_src, ut_dst types.Type) bool { if slice, ok := ut_src.(*types.Slice); ok { if ptr, ok := ut_dst.(*types.Pointer); ok { if arr, ok := ptr.Elem().Underlying().(*types.Array); ok { return types.Identical(slice.Elem(), arr.Elem()) } } } return false } // isSliceToArray reports whether ut_src is a slice type // that can be converted to an array type ut_dst. // Precondition: neither argument is a named type. func isSliceToArray(ut_src, ut_dst types.Type) bool { if slice, ok := ut_src.(*types.Slice); ok { if arr, ok := ut_dst.(*types.Array); ok { return types.Identical(slice.Elem(), arr.Elem()) } } return false } // emitConv emits to f code to convert Value val to exactly type typ, // and returns the converted value. Implicit conversions are required // by language assignability rules in assignments, parameter passing, // etc. func emitConv(f *Function, val Value, typ types.Type) Value { t_src := val.Type() // Identical types? Conversion is a no-op. if types.Identical(t_src, typ) { return val } ut_dst := typ.Underlying() ut_src := t_src.Underlying() dst_types := typeSetOf(ut_dst) src_types := typeSetOf(ut_src) // Just a change of type, but not value or representation? preserving := underIs(src_types, func(s types.Type) bool { return underIs(dst_types, func(d types.Type) bool { return s != nil && d != nil && isValuePreserving(s, d) // all (s -> d) are value preserving. }) }) if preserving { c := &ChangeType{X: val} c.setType(typ) return f.emit(c) } // Conversion to, or construction of a value of, an interface type? if isNonTypeParamInterface(typ) { // Assignment from one interface type to another? if isNonTypeParamInterface(t_src) { c := &ChangeInterface{X: val} c.setType(typ) return f.emit(c) } // Untyped nil constant? Return interface-typed nil constant. if ut_src == tUntypedNil { return zeroConst(typ) } // Convert (non-nil) "untyped" literals to their default type. if t, ok := ut_src.(*types.Basic); ok && t.Info()&types.IsUntyped != 0 { val = emitConv(f, val, types.Default(ut_src)) } mi := &MakeInterface{X: val} mi.setType(typ) return f.emit(mi) } // Conversion of a compile-time constant value? if c, ok := val.(*Const); ok { if isBasic(ut_dst) || c.Value == nil { // Conversion of a compile-time constant to // another constant type results in a new // constant of the destination type and // (initially) the same abstract value. // We don't truncate the value yet. return NewConst(c.Value, typ) } // We're converting from constant to non-constant type, // e.g. string -> []byte/[]rune. } // Conversion from slice to array pointer? slice2ptr := underIs(src_types, func(s types.Type) bool { return underIs(dst_types, func(d types.Type) bool { return s != nil && d != nil && isSliceToArrayPointer(s, d) // all (s->d) are slice to array pointer conversion. }) }) if slice2ptr { c := &SliceToArrayPointer{X: val} c.setType(typ) return f.emit(c) } // Conversion from slice to array? slice2array := underIs(src_types, func(s types.Type) bool { return underIs(dst_types, func(d types.Type) bool { return s != nil && d != nil && isSliceToArray(s, d) // all (s->d) are slice to array conversion. }) }) if slice2array { return emitSliceToArray(f, val, typ) } // A representation-changing conversion? // All of ut_src or ut_dst is basic, byte slice, or rune slice? if isBasicConvTypes(src_types) || isBasicConvTypes(dst_types) { c := &Convert{X: val} c.setType(typ) return f.emit(c) } panic(fmt.Sprintf("in %s: cannot convert %s (%s) to %s", f, val, val.Type(), typ)) } // emitTypeCoercion emits to f code to coerce the type of a // Value v to exactly type typ, and returns the coerced value. // // Requires that coercing v.Typ() to typ is a value preserving change. // // Currently used only when v.Type() is a type instance of typ or vice versa. // A type v is a type instance of a type t if there exists a // type parameter substitution σ s.t. σ(v) == t. Example: // // σ(func(T) T) == func(int) int for σ == [T ↦ int] // // This happens in instantiation wrappers for conversion // from an instantiation to a parameterized type (and vice versa) // with σ substituting f.typeparams by f.typeargs. func emitTypeCoercion(f *Function, v Value, typ types.Type) Value { if types.Identical(v.Type(), typ) { return v // no coercion needed } // TODO(taking): for instances should we record which side is the instance? c := &ChangeType{ X: v, } c.setType(typ) f.emit(c) return c } // emitStore emits to f an instruction to store value val at location // addr, applying implicit conversions as required by assignability rules. func emitStore(f *Function, addr, val Value, pos token.Pos) *Store { s := &Store{ Addr: addr, Val: emitConv(f, val, deref(addr.Type())), pos: pos, } f.emit(s) return s } // emitJump emits to f a jump to target, and updates the control-flow graph. // Postcondition: f.currentBlock is nil. func emitJump(f *Function, target *BasicBlock) { b := f.currentBlock b.emit(new(Jump)) addEdge(b, target) f.currentBlock = nil } // emitIf emits to f a conditional jump to tblock or fblock based on // cond, and updates the control-flow graph. // Postcondition: f.currentBlock is nil. func emitIf(f *Function, cond Value, tblock, fblock *BasicBlock) { b := f.currentBlock b.emit(&If{Cond: cond}) addEdge(b, tblock) addEdge(b, fblock) f.currentBlock = nil } // emitExtract emits to f an instruction to extract the index'th // component of tuple. It returns the extracted value. func emitExtract(f *Function, tuple Value, index int) Value { e := &Extract{Tuple: tuple, Index: index} e.setType(tuple.Type().(*types.Tuple).At(index).Type()) return f.emit(e) } // emitTypeAssert emits to f a type assertion value := x.(t) and // returns the value. x.Type() must be an interface. func emitTypeAssert(f *Function, x Value, t types.Type, pos token.Pos) Value { a := &TypeAssert{X: x, AssertedType: t} a.setPos(pos) a.setType(t) return f.emit(a) } // emitTypeTest emits to f a type test value,ok := x.(t) and returns // a (value, ok) tuple. x.Type() must be an interface. func emitTypeTest(f *Function, x Value, t types.Type, pos token.Pos) Value { a := &TypeAssert{ X: x, AssertedType: t, CommaOk: true, } a.setPos(pos) a.setType(types.NewTuple( newVar("value", t), varOk, )) return f.emit(a) } // emitTailCall emits to f a function call in tail position. The // caller is responsible for all fields of 'call' except its type. // Intended for wrapper methods. // Precondition: f does/will not use deferred procedure calls. // Postcondition: f.currentBlock is nil. func emitTailCall(f *Function, call *Call) { tresults := f.Signature.Results() nr := tresults.Len() if nr == 1 { call.typ = tresults.At(0).Type() } else { call.typ = tresults } tuple := f.emit(call) var ret Return switch nr { case 0: // no-op case 1: ret.Results = []Value{tuple} default: for i := 0; i < nr; i++ { v := emitExtract(f, tuple, i) // TODO(adonovan): in principle, this is required: // v = emitConv(f, o.Type, f.Signature.Results[i].Type) // but in practice emitTailCall is only used when // the types exactly match. ret.Results = append(ret.Results, v) } } f.emit(&ret) f.currentBlock = nil } // emitImplicitSelections emits to f code to apply the sequence of // implicit field selections specified by indices to base value v, and // returns the selected value. // // If v is the address of a struct, the result will be the address of // a field; if it is the value of a struct, the result will be the // value of a field. func emitImplicitSelections(f *Function, v Value, indices []int, pos token.Pos) Value { for _, index := range indices { fld := typeparams.CoreType(deref(v.Type())).(*types.Struct).Field(index) if isPointer(v.Type()) { instr := &FieldAddr{ X: v, Field: index, } instr.setPos(pos) instr.setType(types.NewPointer(fld.Type())) v = f.emit(instr) // Load the field's value iff indirectly embedded. if isPointer(fld.Type()) { v = emitLoad(f, v) } } else { instr := &Field{ X: v, Field: index, } instr.setPos(pos) instr.setType(fld.Type()) v = f.emit(instr) } } return v } // emitFieldSelection emits to f code to select the index'th field of v. // // If wantAddr, the input must be a pointer-to-struct and the result // will be the field's address; otherwise the result will be the // field's value. // Ident id is used for position and debug info. func emitFieldSelection(f *Function, v Value, index int, wantAddr bool, id *ast.Ident) Value { fld := typeparams.CoreType(deref(v.Type())).(*types.Struct).Field(index) if isPointer(v.Type()) { instr := &FieldAddr{ X: v, Field: index, } instr.setPos(id.Pos()) instr.setType(types.NewPointer(fld.Type())) v = f.emit(instr) // Load the field's value iff we don't want its address. if !wantAddr { v = emitLoad(f, v) } } else { instr := &Field{ X: v, Field: index, } instr.setPos(id.Pos()) instr.setType(fld.Type()) v = f.emit(instr) } emitDebugRef(f, id, v, wantAddr) return v } // emitSliceToArray emits to f code to convert a slice value to an array value. // // Precondition: all types in type set of typ are arrays and convertible to all // types in the type set of val.Type(). func emitSliceToArray(f *Function, val Value, typ types.Type) Value { // Emit the following: // if val == nil && len(typ) == 0 { // ptr = &[0]T{} // } else { // ptr = SliceToArrayPointer(val) // } // v = *ptr ptype := types.NewPointer(typ) p := &SliceToArrayPointer{X: val} p.setType(ptype) ptr := f.emit(p) nilb := f.newBasicBlock("slicetoarray.nil") nonnilb := f.newBasicBlock("slicetoarray.nonnil") done := f.newBasicBlock("slicetoarray.done") cond := emitCompare(f, token.EQL, ptr, zeroConst(ptype), token.NoPos) emitIf(f, cond, nilb, nonnilb) f.currentBlock = nilb zero := f.addLocal(typ, token.NoPos) emitJump(f, done) f.currentBlock = nonnilb emitJump(f, done) f.currentBlock = done phi := &Phi{Edges: []Value{zero, ptr}, Comment: "slicetoarray"} phi.pos = val.Pos() phi.setType(typ) x := f.emit(phi) unOp := &UnOp{Op: token.MUL, X: x} unOp.setType(typ) return f.emit(unOp) } // zeroValue emits to f code to produce a zero value of type t, // and returns it. func zeroValue(f *Function, t types.Type) Value { switch t.Underlying().(type) { case *types.Struct, *types.Array: return emitLoad(f, f.addLocal(t, token.NoPos)) default: return zeroConst(t) } } // createRecoverBlock emits to f a block of code to return after a // recovered panic, and sets f.Recover to it. // // If f's result parameters are named, the code loads and returns // their current values, otherwise it returns the zero values of their // type. // // Idempotent. func createRecoverBlock(f *Function) { if f.Recover != nil { return // already created } saved := f.currentBlock f.Recover = f.newBasicBlock("recover") f.currentBlock = f.Recover var results []Value if f.namedResults != nil { // Reload NRPs to form value tuple. for _, r := range f.namedResults { results = append(results, emitLoad(f, r)) } } else { R := f.Signature.Results() for i, n := 0, R.Len(); i < n; i++ { T := R.At(i).Type() // Return zero value of each result type. results = append(results, zeroValue(f, T)) } } f.emit(&Return{Results: results}) f.currentBlock = saved }