...

Source file src/golang.org/x/tools/go/ssa/dom.go

Documentation: golang.org/x/tools/go/ssa

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This file defines algorithms related to dominance.
     8  
     9  // Dominator tree construction ----------------------------------------
    10  //
    11  // We use the algorithm described in Lengauer & Tarjan. 1979.  A fast
    12  // algorithm for finding dominators in a flowgraph.
    13  // http://doi.acm.org/10.1145/357062.357071
    14  //
    15  // We also apply the optimizations to SLT described in Georgiadis et
    16  // al, Finding Dominators in Practice, JGAA 2006,
    17  // http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf
    18  // to avoid the need for buckets of size > 1.
    19  
    20  import (
    21  	"bytes"
    22  	"fmt"
    23  	"math/big"
    24  	"os"
    25  	"sort"
    26  )
    27  
    28  // Idom returns the block that immediately dominates b:
    29  // its parent in the dominator tree, if any.
    30  // Neither the entry node (b.Index==0) nor recover node
    31  // (b==b.Parent().Recover()) have a parent.
    32  func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom }
    33  
    34  // Dominees returns the list of blocks that b immediately dominates:
    35  // its children in the dominator tree.
    36  func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children }
    37  
    38  // Dominates reports whether b dominates c.
    39  func (b *BasicBlock) Dominates(c *BasicBlock) bool {
    40  	return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post
    41  }
    42  
    43  type byDomPreorder []*BasicBlock
    44  
    45  func (a byDomPreorder) Len() int           { return len(a) }
    46  func (a byDomPreorder) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
    47  func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre }
    48  
    49  // DomPreorder returns a new slice containing the blocks of f in
    50  // dominator tree preorder.
    51  func (f *Function) DomPreorder() []*BasicBlock {
    52  	n := len(f.Blocks)
    53  	order := make(byDomPreorder, n)
    54  	copy(order, f.Blocks)
    55  	sort.Sort(order)
    56  	return order
    57  }
    58  
    59  // domInfo contains a BasicBlock's dominance information.
    60  type domInfo struct {
    61  	idom      *BasicBlock   // immediate dominator (parent in domtree)
    62  	children  []*BasicBlock // nodes immediately dominated by this one
    63  	pre, post int32         // pre- and post-order numbering within domtree
    64  }
    65  
    66  // ltState holds the working state for Lengauer-Tarjan algorithm
    67  // (during which domInfo.pre is repurposed for CFG DFS preorder number).
    68  type ltState struct {
    69  	// Each slice is indexed by b.Index.
    70  	sdom     []*BasicBlock // b's semidominator
    71  	parent   []*BasicBlock // b's parent in DFS traversal of CFG
    72  	ancestor []*BasicBlock // b's ancestor with least sdom
    73  }
    74  
    75  // dfs implements the depth-first search part of the LT algorithm.
    76  func (lt *ltState) dfs(v *BasicBlock, i int32, preorder []*BasicBlock) int32 {
    77  	preorder[i] = v
    78  	v.dom.pre = i // For now: DFS preorder of spanning tree of CFG
    79  	i++
    80  	lt.sdom[v.Index] = v
    81  	lt.link(nil, v)
    82  	for _, w := range v.Succs {
    83  		if lt.sdom[w.Index] == nil {
    84  			lt.parent[w.Index] = v
    85  			i = lt.dfs(w, i, preorder)
    86  		}
    87  	}
    88  	return i
    89  }
    90  
    91  // eval implements the EVAL part of the LT algorithm.
    92  func (lt *ltState) eval(v *BasicBlock) *BasicBlock {
    93  	// TODO(adonovan): opt: do path compression per simple LT.
    94  	u := v
    95  	for ; lt.ancestor[v.Index] != nil; v = lt.ancestor[v.Index] {
    96  		if lt.sdom[v.Index].dom.pre < lt.sdom[u.Index].dom.pre {
    97  			u = v
    98  		}
    99  	}
   100  	return u
   101  }
   102  
   103  // link implements the LINK part of the LT algorithm.
   104  func (lt *ltState) link(v, w *BasicBlock) {
   105  	lt.ancestor[w.Index] = v
   106  }
   107  
   108  // buildDomTree computes the dominator tree of f using the LT algorithm.
   109  // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run).
   110  func buildDomTree(f *Function) {
   111  	// The step numbers refer to the original LT paper; the
   112  	// reordering is due to Georgiadis.
   113  
   114  	// Clear any previous domInfo.
   115  	for _, b := range f.Blocks {
   116  		b.dom = domInfo{}
   117  	}
   118  
   119  	n := len(f.Blocks)
   120  	// Allocate space for 5 contiguous [n]*BasicBlock arrays:
   121  	// sdom, parent, ancestor, preorder, buckets.
   122  	space := make([]*BasicBlock, 5*n)
   123  	lt := ltState{
   124  		sdom:     space[0:n],
   125  		parent:   space[n : 2*n],
   126  		ancestor: space[2*n : 3*n],
   127  	}
   128  
   129  	// Step 1.  Number vertices by depth-first preorder.
   130  	preorder := space[3*n : 4*n]
   131  	root := f.Blocks[0]
   132  	prenum := lt.dfs(root, 0, preorder)
   133  	recover := f.Recover
   134  	if recover != nil {
   135  		lt.dfs(recover, prenum, preorder)
   136  	}
   137  
   138  	buckets := space[4*n : 5*n]
   139  	copy(buckets, preorder)
   140  
   141  	// In reverse preorder...
   142  	for i := int32(n) - 1; i > 0; i-- {
   143  		w := preorder[i]
   144  
   145  		// Step 3. Implicitly define the immediate dominator of each node.
   146  		for v := buckets[i]; v != w; v = buckets[v.dom.pre] {
   147  			u := lt.eval(v)
   148  			if lt.sdom[u.Index].dom.pre < i {
   149  				v.dom.idom = u
   150  			} else {
   151  				v.dom.idom = w
   152  			}
   153  		}
   154  
   155  		// Step 2. Compute the semidominators of all nodes.
   156  		lt.sdom[w.Index] = lt.parent[w.Index]
   157  		for _, v := range w.Preds {
   158  			u := lt.eval(v)
   159  			if lt.sdom[u.Index].dom.pre < lt.sdom[w.Index].dom.pre {
   160  				lt.sdom[w.Index] = lt.sdom[u.Index]
   161  			}
   162  		}
   163  
   164  		lt.link(lt.parent[w.Index], w)
   165  
   166  		if lt.parent[w.Index] == lt.sdom[w.Index] {
   167  			w.dom.idom = lt.parent[w.Index]
   168  		} else {
   169  			buckets[i] = buckets[lt.sdom[w.Index].dom.pre]
   170  			buckets[lt.sdom[w.Index].dom.pre] = w
   171  		}
   172  	}
   173  
   174  	// The final 'Step 3' is now outside the loop.
   175  	for v := buckets[0]; v != root; v = buckets[v.dom.pre] {
   176  		v.dom.idom = root
   177  	}
   178  
   179  	// Step 4. Explicitly define the immediate dominator of each
   180  	// node, in preorder.
   181  	for _, w := range preorder[1:] {
   182  		if w == root || w == recover {
   183  			w.dom.idom = nil
   184  		} else {
   185  			if w.dom.idom != lt.sdom[w.Index] {
   186  				w.dom.idom = w.dom.idom.dom.idom
   187  			}
   188  			// Calculate Children relation as inverse of Idom.
   189  			w.dom.idom.dom.children = append(w.dom.idom.dom.children, w)
   190  		}
   191  	}
   192  
   193  	pre, post := numberDomTree(root, 0, 0)
   194  	if recover != nil {
   195  		numberDomTree(recover, pre, post)
   196  	}
   197  
   198  	// printDomTreeDot(os.Stderr, f)        // debugging
   199  	// printDomTreeText(os.Stderr, root, 0) // debugging
   200  
   201  	if f.Prog.mode&SanityCheckFunctions != 0 {
   202  		sanityCheckDomTree(f)
   203  	}
   204  }
   205  
   206  // numberDomTree sets the pre- and post-order numbers of a depth-first
   207  // traversal of the dominator tree rooted at v.  These are used to
   208  // answer dominance queries in constant time.
   209  func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
   210  	v.dom.pre = pre
   211  	pre++
   212  	for _, child := range v.dom.children {
   213  		pre, post = numberDomTree(child, pre, post)
   214  	}
   215  	v.dom.post = post
   216  	post++
   217  	return pre, post
   218  }
   219  
   220  // Testing utilities ----------------------------------------
   221  
   222  // sanityCheckDomTree checks the correctness of the dominator tree
   223  // computed by the LT algorithm by comparing against the dominance
   224  // relation computed by a naive Kildall-style forward dataflow
   225  // analysis (Algorithm 10.16 from the "Dragon" book).
   226  func sanityCheckDomTree(f *Function) {
   227  	n := len(f.Blocks)
   228  
   229  	// D[i] is the set of blocks that dominate f.Blocks[i],
   230  	// represented as a bit-set of block indices.
   231  	D := make([]big.Int, n)
   232  
   233  	one := big.NewInt(1)
   234  
   235  	// all is the set of all blocks; constant.
   236  	var all big.Int
   237  	all.Set(one).Lsh(&all, uint(n)).Sub(&all, one)
   238  
   239  	// Initialization.
   240  	for i, b := range f.Blocks {
   241  		if i == 0 || b == f.Recover {
   242  			// A root is dominated only by itself.
   243  			D[i].SetBit(&D[0], 0, 1)
   244  		} else {
   245  			// All other blocks are (initially) dominated
   246  			// by every block.
   247  			D[i].Set(&all)
   248  		}
   249  	}
   250  
   251  	// Iteration until fixed point.
   252  	for changed := true; changed; {
   253  		changed = false
   254  		for i, b := range f.Blocks {
   255  			if i == 0 || b == f.Recover {
   256  				continue
   257  			}
   258  			// Compute intersection across predecessors.
   259  			var x big.Int
   260  			x.Set(&all)
   261  			for _, pred := range b.Preds {
   262  				x.And(&x, &D[pred.Index])
   263  			}
   264  			x.SetBit(&x, i, 1) // a block always dominates itself.
   265  			if D[i].Cmp(&x) != 0 {
   266  				D[i].Set(&x)
   267  				changed = true
   268  			}
   269  		}
   270  	}
   271  
   272  	// Check the entire relation.  O(n^2).
   273  	// The Recover block (if any) must be treated specially so we skip it.
   274  	ok := true
   275  	for i := 0; i < n; i++ {
   276  		for j := 0; j < n; j++ {
   277  			b, c := f.Blocks[i], f.Blocks[j]
   278  			if c == f.Recover {
   279  				continue
   280  			}
   281  			actual := b.Dominates(c)
   282  			expected := D[j].Bit(i) == 1
   283  			if actual != expected {
   284  				fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected)
   285  				ok = false
   286  			}
   287  		}
   288  	}
   289  
   290  	preorder := f.DomPreorder()
   291  	for _, b := range f.Blocks {
   292  		if got := preorder[b.dom.pre]; got != b {
   293  			fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b)
   294  			ok = false
   295  		}
   296  	}
   297  
   298  	if !ok {
   299  		panic("sanityCheckDomTree failed for " + f.String())
   300  	}
   301  
   302  }
   303  
   304  // Printing functions ----------------------------------------
   305  
   306  // printDomTreeText prints the dominator tree as text, using indentation.
   307  func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) {
   308  	fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
   309  	for _, child := range v.dom.children {
   310  		printDomTreeText(buf, child, indent+1)
   311  	}
   312  }
   313  
   314  // printDomTreeDot prints the dominator tree of f in AT&T GraphViz
   315  // (.dot) format.
   316  func printDomTreeDot(buf *bytes.Buffer, f *Function) {
   317  	fmt.Fprintln(buf, "//", f)
   318  	fmt.Fprintln(buf, "digraph domtree {")
   319  	for i, b := range f.Blocks {
   320  		v := b.dom
   321  		fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
   322  		// TODO(adonovan): improve appearance of edges
   323  		// belonging to both dominator tree and CFG.
   324  
   325  		// Dominator tree edge.
   326  		if i != 0 {
   327  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre)
   328  		}
   329  		// CFG edges.
   330  		for _, pred := range b.Preds {
   331  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre)
   332  		}
   333  	}
   334  	fmt.Fprintln(buf, "}")
   335  }
   336  

View as plain text