...

Source file src/golang.org/x/tools/go/pointer/hvn.go

Documentation: golang.org/x/tools/go/pointer

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package pointer
     6  
     7  // This file implements Hash-Value Numbering (HVN), a pre-solver
     8  // constraint optimization described in Hardekopf & Lin, SAS'07 (see
     9  // doc.go) that analyses the graph topology to determine which sets of
    10  // variables are "pointer equivalent" (PE), i.e. must have identical
    11  // points-to sets in the solution.
    12  //
    13  // A separate ("offline") graph is constructed.  Its nodes are those of
    14  // the main-graph, plus an additional node *X for each pointer node X.
    15  // With this graph we can reason about the unknown points-to set of
    16  // dereferenced pointers.  (We do not generalize this to represent
    17  // unknown fields x->f, perhaps because such fields would be numerous,
    18  // though it might be worth an experiment.)
    19  //
    20  // Nodes whose points-to relations are not entirely captured by the
    21  // graph are marked as "indirect": the *X nodes, the parameters of
    22  // address-taken functions (which includes all functions in method
    23  // sets), or nodes updated by the solver rules for reflection, etc.
    24  //
    25  // All addr (y=&x) nodes are initially assigned a pointer-equivalence
    26  // (PE) label equal to x's nodeid in the main graph.  (These are the
    27  // only PE labels that are less than len(a.nodes).)
    28  //
    29  // All offsetAddr (y=&x.f) constraints are initially assigned a PE
    30  // label; such labels are memoized, keyed by (x, f), so that equivalent
    31  // nodes y as assigned the same label.
    32  //
    33  // Then we process each strongly connected component (SCC) of the graph
    34  // in topological order, assigning it a PE label based on the set P of
    35  // PE labels that flow to it from its immediate dependencies.
    36  //
    37  // If any node in P is "indirect", the entire SCC is assigned a fresh PE
    38  // label.  Otherwise:
    39  //
    40  // |P|=0  if P is empty, all nodes in the SCC are non-pointers (e.g.
    41  //        uninitialized variables, or formal params of dead functions)
    42  //        and the SCC is assigned the PE label of zero.
    43  //
    44  // |P|=1  if P is a singleton, the SCC is assigned the same label as the
    45  //        sole element of P.
    46  //
    47  // |P|>1  if P contains multiple labels, a unique label representing P is
    48  //        invented and recorded in an hash table, so that other
    49  //        equivalent SCCs may also be assigned this label, akin to
    50  //        conventional hash-value numbering in a compiler.
    51  //
    52  // Finally, a renumbering is computed such that each node is replaced by
    53  // the lowest-numbered node with the same PE label.  All constraints are
    54  // renumbered, and any resulting duplicates are eliminated.
    55  //
    56  // The only nodes that are not renumbered are the objects x in addr
    57  // (y=&x) constraints, since the ids of these nodes (and fields derived
    58  // from them via offsetAddr rules) are the elements of all points-to
    59  // sets, so they must remain as they are if we want the same solution.
    60  //
    61  // The solverStates (node.solve) for nodes in the same equivalence class
    62  // are linked together so that all nodes in the class have the same
    63  // solution.  This avoids the need to renumber nodeids buried in
    64  // Queries, cgnodes, etc (like (*analysis).renumber() does) since only
    65  // the solution is needed.
    66  //
    67  // The result of HVN is that the number of distinct nodes and
    68  // constraints is reduced, but the solution is identical (almost---see
    69  // CROSS-CHECK below).  In particular, both linear and cyclic chains of
    70  // copies are each replaced by a single node.
    71  //
    72  // Nodes and constraints created "online" (e.g. while solving reflection
    73  // constraints) are not subject to this optimization.
    74  //
    75  // PERFORMANCE
    76  //
    77  // In two benchmarks (guru and godoc), HVN eliminates about two thirds
    78  // of nodes, the majority accounted for by non-pointers: nodes of
    79  // non-pointer type, pointers that remain nil, formal parameters of dead
    80  // functions, nodes of untracked types, etc.  It also reduces the number
    81  // of constraints, also by about two thirds, and the solving time by
    82  // 30--42%, although we must pay about 15% for the running time of HVN
    83  // itself.  The benefit is greater for larger applications.
    84  //
    85  // There are many possible optimizations to improve the performance:
    86  // * Use fewer than 1:1 onodes to main graph nodes: many of the onodes
    87  //   we create are not needed.
    88  // * HU (HVN with Union---see paper): coalesce "union" peLabels when
    89  //   their expanded-out sets are equal.
    90  // * HR (HVN with deReference---see paper): this will require that we
    91  //   apply HVN until fixed point, which may need more bookkeeping of the
    92  //   correspondence of main nodes to onodes.
    93  // * Location Equivalence (see paper): have points-to sets contain not
    94  //   locations but location-equivalence class labels, each representing
    95  //   a set of locations.
    96  // * HVN with field-sensitive ref: model each of the fields of a
    97  //   pointer-to-struct.
    98  //
    99  // CROSS-CHECK
   100  //
   101  // To verify the soundness of the optimization, when the
   102  // debugHVNCrossCheck option is enabled, we run the solver twice, once
   103  // before and once after running HVN, dumping the solution to disk, and
   104  // then we compare the results.  If they are not identical, the analysis
   105  // panics.
   106  //
   107  // The solution dumped to disk includes only the N*N submatrix of the
   108  // complete solution where N is the number of nodes after generation.
   109  // In other words, we ignore pointer variables and objects created by
   110  // the solver itself, since their numbering depends on the solver order,
   111  // which is affected by the optimization.  In any case, that's the only
   112  // part the client cares about.
   113  //
   114  // The cross-check is too strict and may fail spuriously.  Although the
   115  // H&L paper describing HVN states that the solutions obtained should be
   116  // identical, this is not the case in practice because HVN can collapse
   117  // cycles involving *p even when pts(p)={}.  Consider this example
   118  // distilled from testdata/hello.go:
   119  //
   120  //	var x T
   121  //	func f(p **T) {
   122  //		t0 = *p
   123  //		...
   124  //		t1 = φ(t0, &x)
   125  //		*p = t1
   126  //	}
   127  //
   128  // If f is dead code, we get:
   129  // 	unoptimized:  pts(p)={} pts(t0)={} pts(t1)={&x}
   130  // 	optimized:    pts(p)={} pts(t0)=pts(t1)=pts(*p)={&x}
   131  //
   132  // It's hard to argue that this is a bug: the result is sound and the
   133  // loss of precision is inconsequential---f is dead code, after all.
   134  // But unfortunately it limits the usefulness of the cross-check since
   135  // failures must be carefully analyzed.  Ben Hardekopf suggests (in
   136  // personal correspondence) some approaches to mitigating it:
   137  //
   138  // 	If there is a node with an HVN points-to set that is a superset
   139  // 	of the NORM points-to set, then either it's a bug or it's a
   140  // 	result of this issue. If it's a result of this issue, then in
   141  // 	the offline constraint graph there should be a REF node inside
   142  // 	some cycle that reaches this node, and in the NORM solution the
   143  // 	pointer being dereferenced by that REF node should be the empty
   144  // 	set. If that isn't true then this is a bug. If it is true, then
   145  // 	you can further check that in the NORM solution the "extra"
   146  // 	points-to info in the HVN solution does in fact come from that
   147  // 	purported cycle (if it doesn't, then this is still a bug). If
   148  // 	you're doing the further check then you'll need to do it for
   149  // 	each "extra" points-to element in the HVN points-to set.
   150  //
   151  // 	There are probably ways to optimize these checks by taking
   152  // 	advantage of graph properties. For example, extraneous points-to
   153  // 	info will flow through the graph and end up in many
   154  // 	nodes. Rather than checking every node with extra info, you
   155  // 	could probably work out the "origin point" of the extra info and
   156  // 	just check there. Note that the check in the first bullet is
   157  // 	looking for soundness bugs, while the check in the second bullet
   158  // 	is looking for precision bugs; depending on your needs, you may
   159  // 	care more about one than the other.
   160  //
   161  // which we should evaluate.  The cross-check is nonetheless invaluable
   162  // for all but one of the programs in the pointer_test suite.
   163  
   164  import (
   165  	"fmt"
   166  	"go/types"
   167  	"io"
   168  	"reflect"
   169  
   170  	"golang.org/x/tools/container/intsets"
   171  )
   172  
   173  // A peLabel is a pointer-equivalence label: two nodes with the same
   174  // peLabel have identical points-to solutions.
   175  //
   176  // The numbers are allocated consecutively like so:
   177  //
   178  //	0	not a pointer
   179  //	1..N-1	addrConstraints (equals the constraint's .src field, hence sparse)
   180  //	...	offsetAddr constraints
   181  //	...	SCCs (with indirect nodes or multiple inputs)
   182  //
   183  // Each PE label denotes a set of pointers containing a single addr, a
   184  // single offsetAddr, or some set of other PE labels.
   185  type peLabel int
   186  
   187  type hvn struct {
   188  	a        *analysis
   189  	N        int                // len(a.nodes) immediately after constraint generation
   190  	log      io.Writer          // (optional) log of HVN lemmas
   191  	onodes   []*onode           // nodes of the offline graph
   192  	label    peLabel            // the next available PE label
   193  	hvnLabel map[string]peLabel // hash-value numbering (PE label) for each set of onodeids
   194  	stack    []onodeid          // DFS stack
   195  	index    int32              // next onode.index, from Tarjan's SCC algorithm
   196  
   197  	// For each distinct offsetAddrConstraint (src, offset) pair,
   198  	// offsetAddrLabels records a unique PE label >= N.
   199  	offsetAddrLabels map[offsetAddr]peLabel
   200  }
   201  
   202  // The index of an node in the offline graph.
   203  // (Currently the first N align with the main nodes,
   204  // but this may change with HRU.)
   205  type onodeid uint32
   206  
   207  // An onode is a node in the offline constraint graph.
   208  // (Where ambiguous, members of analysis.nodes are referred to as
   209  // "main graph" nodes.)
   210  //
   211  // Edges in the offline constraint graph (edges and implicit) point to
   212  // the source, i.e. against the flow of values: they are dependencies.
   213  // Implicit edges are used for SCC computation, but not for gathering
   214  // incoming labels.
   215  type onode struct {
   216  	rep onodeid // index of representative of SCC in offline constraint graph
   217  
   218  	edges    intsets.Sparse // constraint edges X-->Y (this onode is X)
   219  	implicit intsets.Sparse // implicit edges *X-->*Y (this onode is X)
   220  	peLabels intsets.Sparse // set of peLabels are pointer-equivalent to this one
   221  	indirect bool           // node has points-to relations not represented in graph
   222  
   223  	// Tarjan's SCC algorithm
   224  	index, lowlink int32 // Tarjan numbering
   225  	scc            int32 // -ve => on stack; 0 => unvisited; +ve => node is root of a found SCC
   226  }
   227  
   228  type offsetAddr struct {
   229  	ptr    nodeid
   230  	offset uint32
   231  }
   232  
   233  // nextLabel issues the next unused pointer-equivalence label.
   234  func (h *hvn) nextLabel() peLabel {
   235  	h.label++
   236  	return h.label
   237  }
   238  
   239  // ref(X) returns the index of the onode for *X.
   240  func (h *hvn) ref(id onodeid) onodeid {
   241  	return id + onodeid(len(h.a.nodes))
   242  }
   243  
   244  // hvn computes pointer-equivalence labels (peLabels) using the Hash-based
   245  // Value Numbering (HVN) algorithm described in Hardekopf & Lin, SAS'07.
   246  func (a *analysis) hvn() {
   247  	start("HVN")
   248  
   249  	if a.log != nil {
   250  		fmt.Fprintf(a.log, "\n\n==== Pointer equivalence optimization\n\n")
   251  	}
   252  
   253  	h := hvn{
   254  		a:                a,
   255  		N:                len(a.nodes),
   256  		log:              a.log,
   257  		hvnLabel:         make(map[string]peLabel),
   258  		offsetAddrLabels: make(map[offsetAddr]peLabel),
   259  	}
   260  
   261  	if h.log != nil {
   262  		fmt.Fprintf(h.log, "\nCreating offline graph nodes...\n")
   263  	}
   264  
   265  	// Create offline nodes.  The first N nodes correspond to main
   266  	// graph nodes; the next N are their corresponding ref() nodes.
   267  	h.onodes = make([]*onode, 2*h.N)
   268  	for id := range a.nodes {
   269  		id := onodeid(id)
   270  		h.onodes[id] = &onode{}
   271  		h.onodes[h.ref(id)] = &onode{indirect: true}
   272  	}
   273  
   274  	// Each node initially represents just itself.
   275  	for id, o := range h.onodes {
   276  		o.rep = onodeid(id)
   277  	}
   278  
   279  	h.markIndirectNodes()
   280  
   281  	// Reserve the first N PE labels for addrConstraints.
   282  	h.label = peLabel(h.N)
   283  
   284  	// Add offline constraint edges.
   285  	if h.log != nil {
   286  		fmt.Fprintf(h.log, "\nAdding offline graph edges...\n")
   287  	}
   288  	for _, c := range a.constraints {
   289  		if debugHVNVerbose && h.log != nil {
   290  			fmt.Fprintf(h.log, "; %s\n", c)
   291  		}
   292  		c.presolve(&h)
   293  	}
   294  
   295  	// Find and collapse SCCs.
   296  	if h.log != nil {
   297  		fmt.Fprintf(h.log, "\nFinding SCCs...\n")
   298  	}
   299  	h.index = 1
   300  	for id, o := range h.onodes {
   301  		if id > 0 && o.index == 0 {
   302  			// Start depth-first search at each unvisited node.
   303  			h.visit(onodeid(id))
   304  		}
   305  	}
   306  
   307  	// Dump the solution
   308  	// (NB: somewhat redundant with logging from simplify().)
   309  	if debugHVNVerbose && h.log != nil {
   310  		fmt.Fprintf(h.log, "\nPointer equivalences:\n")
   311  		for id, o := range h.onodes {
   312  			if id == 0 {
   313  				continue
   314  			}
   315  			if id == int(h.N) {
   316  				fmt.Fprintf(h.log, "---\n")
   317  			}
   318  			fmt.Fprintf(h.log, "o%d\t", id)
   319  			if o.rep != onodeid(id) {
   320  				fmt.Fprintf(h.log, "rep=o%d", o.rep)
   321  			} else {
   322  				fmt.Fprintf(h.log, "p%d", o.peLabels.Min())
   323  				if o.indirect {
   324  					fmt.Fprint(h.log, " indirect")
   325  				}
   326  			}
   327  			fmt.Fprintln(h.log)
   328  		}
   329  	}
   330  
   331  	// Simplify the main constraint graph
   332  	h.simplify()
   333  
   334  	a.showCounts()
   335  
   336  	stop("HVN")
   337  }
   338  
   339  // ---- constraint-specific rules ----
   340  
   341  // dst := &src
   342  func (c *addrConstraint) presolve(h *hvn) {
   343  	// Each object (src) is an initial PE label.
   344  	label := peLabel(c.src) // label < N
   345  	if debugHVNVerbose && h.log != nil {
   346  		// duplicate log messages are possible
   347  		fmt.Fprintf(h.log, "\tcreate p%d: {&n%d}\n", label, c.src)
   348  	}
   349  	odst := onodeid(c.dst)
   350  	osrc := onodeid(c.src)
   351  
   352  	// Assign dst this label.
   353  	h.onodes[odst].peLabels.Insert(int(label))
   354  	if debugHVNVerbose && h.log != nil {
   355  		fmt.Fprintf(h.log, "\to%d has p%d\n", odst, label)
   356  	}
   357  
   358  	h.addImplicitEdge(h.ref(odst), osrc) // *dst ~~> src.
   359  }
   360  
   361  // dst = src
   362  func (c *copyConstraint) presolve(h *hvn) {
   363  	odst := onodeid(c.dst)
   364  	osrc := onodeid(c.src)
   365  	h.addEdge(odst, osrc)                       //  dst -->  src
   366  	h.addImplicitEdge(h.ref(odst), h.ref(osrc)) // *dst ~~> *src
   367  }
   368  
   369  // dst = *src + offset
   370  func (c *loadConstraint) presolve(h *hvn) {
   371  	odst := onodeid(c.dst)
   372  	osrc := onodeid(c.src)
   373  	if c.offset == 0 {
   374  		h.addEdge(odst, h.ref(osrc)) // dst --> *src
   375  	} else {
   376  		// We don't interpret load-with-offset, e.g. results
   377  		// of map value lookup, R-block of dynamic call, slice
   378  		// copy/append, reflection.
   379  		h.markIndirect(odst, "load with offset")
   380  	}
   381  }
   382  
   383  // *dst + offset = src
   384  func (c *storeConstraint) presolve(h *hvn) {
   385  	odst := onodeid(c.dst)
   386  	osrc := onodeid(c.src)
   387  	if c.offset == 0 {
   388  		h.onodes[h.ref(odst)].edges.Insert(int(osrc)) // *dst --> src
   389  		if debugHVNVerbose && h.log != nil {
   390  			fmt.Fprintf(h.log, "\to%d --> o%d\n", h.ref(odst), osrc)
   391  		}
   392  	}
   393  	// We don't interpret store-with-offset.
   394  	// See discussion of soundness at markIndirectNodes.
   395  }
   396  
   397  // dst = &src.offset
   398  func (c *offsetAddrConstraint) presolve(h *hvn) {
   399  	// Give each distinct (addr, offset) pair a fresh PE label.
   400  	// The cache performs CSE, effectively.
   401  	key := offsetAddr{c.src, c.offset}
   402  	label, ok := h.offsetAddrLabels[key]
   403  	if !ok {
   404  		label = h.nextLabel()
   405  		h.offsetAddrLabels[key] = label
   406  		if debugHVNVerbose && h.log != nil {
   407  			fmt.Fprintf(h.log, "\tcreate p%d: {&n%d.#%d}\n",
   408  				label, c.src, c.offset)
   409  		}
   410  	}
   411  
   412  	// Assign dst this label.
   413  	h.onodes[c.dst].peLabels.Insert(int(label))
   414  	if debugHVNVerbose && h.log != nil {
   415  		fmt.Fprintf(h.log, "\to%d has p%d\n", c.dst, label)
   416  	}
   417  }
   418  
   419  // dst = src.(typ)  where typ is an interface
   420  func (c *typeFilterConstraint) presolve(h *hvn) {
   421  	h.markIndirect(onodeid(c.dst), "typeFilter result")
   422  }
   423  
   424  // dst = src.(typ)  where typ is concrete
   425  func (c *untagConstraint) presolve(h *hvn) {
   426  	odst := onodeid(c.dst)
   427  	for end := odst + onodeid(h.a.sizeof(c.typ)); odst < end; odst++ {
   428  		h.markIndirect(odst, "untag result")
   429  	}
   430  }
   431  
   432  // dst = src.method(c.params...)
   433  func (c *invokeConstraint) presolve(h *hvn) {
   434  	// All methods are address-taken functions, so
   435  	// their formal P-blocks were already marked indirect.
   436  
   437  	// Mark the caller's targets node as indirect.
   438  	sig := c.method.Type().(*types.Signature)
   439  	id := c.params
   440  	h.markIndirect(onodeid(c.params), "invoke targets node")
   441  	id++
   442  
   443  	id += nodeid(h.a.sizeof(sig.Params()))
   444  
   445  	// Mark the caller's R-block as indirect.
   446  	end := id + nodeid(h.a.sizeof(sig.Results()))
   447  	for id < end {
   448  		h.markIndirect(onodeid(id), "invoke R-block")
   449  		id++
   450  	}
   451  }
   452  
   453  // markIndirectNodes marks as indirect nodes whose points-to relations
   454  // are not entirely captured by the offline graph, including:
   455  //
   456  //	(a) All address-taken nodes (including the following nodes within
   457  //	    the same object).  This is described in the paper.
   458  //
   459  // The most subtle cause of indirect nodes is the generation of
   460  // store-with-offset constraints since the offline graph doesn't
   461  // represent them.  A global audit of constraint generation reveals the
   462  // following uses of store-with-offset:
   463  //
   464  //	(b) genDynamicCall, for P-blocks of dynamically called functions,
   465  //	    to which dynamic copy edges will be added to them during
   466  //	    solving: from storeConstraint for standalone functions,
   467  //	    and from invokeConstraint for methods.
   468  //	    All such P-blocks must be marked indirect.
   469  //	(c) MakeUpdate, to update the value part of a map object.
   470  //	    All MakeMap objects's value parts must be marked indirect.
   471  //	(d) copyElems, to update the destination array.
   472  //	    All array elements must be marked indirect.
   473  //
   474  // Not all indirect marking happens here.  ref() nodes are marked
   475  // indirect at construction, and each constraint's presolve() method may
   476  // mark additional nodes.
   477  func (h *hvn) markIndirectNodes() {
   478  	// (a) all address-taken nodes, plus all nodes following them
   479  	//     within the same object, since these may be indirectly
   480  	//     stored or address-taken.
   481  	for _, c := range h.a.constraints {
   482  		if c, ok := c.(*addrConstraint); ok {
   483  			start := h.a.enclosingObj(c.src)
   484  			end := start + nodeid(h.a.nodes[start].obj.size)
   485  			for id := c.src; id < end; id++ {
   486  				h.markIndirect(onodeid(id), "A-T object")
   487  			}
   488  		}
   489  	}
   490  
   491  	// (b) P-blocks of all address-taken functions.
   492  	for id := 0; id < h.N; id++ {
   493  		obj := h.a.nodes[id].obj
   494  
   495  		// TODO(adonovan): opt: if obj.cgn.fn is a method and
   496  		// obj.cgn is not its shared contour, this is an
   497  		// "inlined" static method call.  We needn't consider it
   498  		// address-taken since no invokeConstraint will affect it.
   499  
   500  		if obj != nil && obj.flags&otFunction != 0 && h.a.atFuncs[obj.cgn.fn] {
   501  			// address-taken function
   502  			if debugHVNVerbose && h.log != nil {
   503  				fmt.Fprintf(h.log, "n%d is address-taken: %s\n", id, obj.cgn.fn)
   504  			}
   505  			h.markIndirect(onodeid(id), "A-T func identity")
   506  			id++
   507  			sig := obj.cgn.fn.Signature
   508  			psize := h.a.sizeof(sig.Params())
   509  			if sig.Recv() != nil {
   510  				psize += h.a.sizeof(sig.Recv().Type())
   511  			}
   512  			for end := id + int(psize); id < end; id++ {
   513  				h.markIndirect(onodeid(id), "A-T func P-block")
   514  			}
   515  			id--
   516  			continue
   517  		}
   518  	}
   519  
   520  	// (c) all map objects' value fields.
   521  	for _, id := range h.a.mapValues {
   522  		h.markIndirect(onodeid(id), "makemap.value")
   523  	}
   524  
   525  	// (d) all array element objects.
   526  	// TODO(adonovan): opt: can we do better?
   527  	for id := 0; id < h.N; id++ {
   528  		// Identity node for an object of array type?
   529  		if tArray, ok := h.a.nodes[id].typ.(*types.Array); ok {
   530  			// Mark the array element nodes indirect.
   531  			// (Skip past the identity field.)
   532  			for range h.a.flatten(tArray.Elem()) {
   533  				id++
   534  				h.markIndirect(onodeid(id), "array elem")
   535  			}
   536  		}
   537  	}
   538  }
   539  
   540  func (h *hvn) markIndirect(oid onodeid, comment string) {
   541  	h.onodes[oid].indirect = true
   542  	if debugHVNVerbose && h.log != nil {
   543  		fmt.Fprintf(h.log, "\to%d is indirect: %s\n", oid, comment)
   544  	}
   545  }
   546  
   547  // Adds an edge dst-->src.
   548  // Note the unusual convention: edges are dependency (contraflow) edges.
   549  func (h *hvn) addEdge(odst, osrc onodeid) {
   550  	h.onodes[odst].edges.Insert(int(osrc))
   551  	if debugHVNVerbose && h.log != nil {
   552  		fmt.Fprintf(h.log, "\to%d --> o%d\n", odst, osrc)
   553  	}
   554  }
   555  
   556  func (h *hvn) addImplicitEdge(odst, osrc onodeid) {
   557  	h.onodes[odst].implicit.Insert(int(osrc))
   558  	if debugHVNVerbose && h.log != nil {
   559  		fmt.Fprintf(h.log, "\to%d ~~> o%d\n", odst, osrc)
   560  	}
   561  }
   562  
   563  // visit implements the depth-first search of Tarjan's SCC algorithm.
   564  // Precondition: x is canonical.
   565  func (h *hvn) visit(x onodeid) {
   566  	h.checkCanonical(x)
   567  	xo := h.onodes[x]
   568  	xo.index = h.index
   569  	xo.lowlink = h.index
   570  	h.index++
   571  
   572  	h.stack = append(h.stack, x) // push
   573  	assert(xo.scc == 0, "node revisited")
   574  	xo.scc = -1
   575  
   576  	var deps []int
   577  	deps = xo.edges.AppendTo(deps)
   578  	deps = xo.implicit.AppendTo(deps)
   579  
   580  	for _, y := range deps {
   581  		// Loop invariant: x is canonical.
   582  
   583  		y := h.find(onodeid(y))
   584  
   585  		if x == y {
   586  			continue // nodes already coalesced
   587  		}
   588  
   589  		xo := h.onodes[x]
   590  		yo := h.onodes[y]
   591  
   592  		switch {
   593  		case yo.scc > 0:
   594  			// y is already a collapsed SCC
   595  
   596  		case yo.scc < 0:
   597  			// y is on the stack, and thus in the current SCC.
   598  			if yo.index < xo.lowlink {
   599  				xo.lowlink = yo.index
   600  			}
   601  
   602  		default:
   603  			// y is unvisited; visit it now.
   604  			h.visit(y)
   605  			// Note: x and y are now non-canonical.
   606  
   607  			x = h.find(onodeid(x))
   608  
   609  			if yo.lowlink < xo.lowlink {
   610  				xo.lowlink = yo.lowlink
   611  			}
   612  		}
   613  	}
   614  	h.checkCanonical(x)
   615  
   616  	// Is x the root of an SCC?
   617  	if xo.lowlink == xo.index {
   618  		// Coalesce all nodes in the SCC.
   619  		if debugHVNVerbose && h.log != nil {
   620  			fmt.Fprintf(h.log, "scc o%d\n", x)
   621  		}
   622  		for {
   623  			// Pop y from stack.
   624  			i := len(h.stack) - 1
   625  			y := h.stack[i]
   626  			h.stack = h.stack[:i]
   627  
   628  			h.checkCanonical(x)
   629  			xo := h.onodes[x]
   630  			h.checkCanonical(y)
   631  			yo := h.onodes[y]
   632  
   633  			if xo == yo {
   634  				// SCC is complete.
   635  				xo.scc = 1
   636  				h.labelSCC(x)
   637  				break
   638  			}
   639  			h.coalesce(x, y)
   640  		}
   641  	}
   642  }
   643  
   644  // Precondition: x is canonical.
   645  func (h *hvn) labelSCC(x onodeid) {
   646  	h.checkCanonical(x)
   647  	xo := h.onodes[x]
   648  	xpe := &xo.peLabels
   649  
   650  	// All indirect nodes get new labels.
   651  	if xo.indirect {
   652  		label := h.nextLabel()
   653  		if debugHVNVerbose && h.log != nil {
   654  			fmt.Fprintf(h.log, "\tcreate p%d: indirect SCC\n", label)
   655  			fmt.Fprintf(h.log, "\to%d has p%d\n", x, label)
   656  		}
   657  
   658  		// Remove pre-labeling, in case a direct pre-labeled node was
   659  		// merged with an indirect one.
   660  		xpe.Clear()
   661  		xpe.Insert(int(label))
   662  
   663  		return
   664  	}
   665  
   666  	// Invariant: all peLabels sets are non-empty.
   667  	// Those that are logically empty contain zero as their sole element.
   668  	// No other sets contains zero.
   669  
   670  	// Find all labels coming in to the coalesced SCC node.
   671  	for _, y := range xo.edges.AppendTo(nil) {
   672  		y := h.find(onodeid(y))
   673  		if y == x {
   674  			continue // already coalesced
   675  		}
   676  		ype := &h.onodes[y].peLabels
   677  		if debugHVNVerbose && h.log != nil {
   678  			fmt.Fprintf(h.log, "\tedge from o%d = %s\n", y, ype)
   679  		}
   680  
   681  		if ype.IsEmpty() {
   682  			if debugHVNVerbose && h.log != nil {
   683  				fmt.Fprintf(h.log, "\tnode has no PE label\n")
   684  			}
   685  		}
   686  		assert(!ype.IsEmpty(), "incoming node has no PE label")
   687  
   688  		if ype.Has(0) {
   689  			// {0} represents a non-pointer.
   690  			assert(ype.Len() == 1, "PE set contains {0, ...}")
   691  		} else {
   692  			xpe.UnionWith(ype)
   693  		}
   694  	}
   695  
   696  	switch xpe.Len() {
   697  	case 0:
   698  		// SCC has no incoming non-zero PE labels: it is a non-pointer.
   699  		xpe.Insert(0)
   700  
   701  	case 1:
   702  		// already a singleton
   703  
   704  	default:
   705  		// SCC has multiple incoming non-zero PE labels.
   706  		// Find the canonical label representing this set.
   707  		// We use String() as a fingerprint consistent with Equals().
   708  		key := xpe.String()
   709  		label, ok := h.hvnLabel[key]
   710  		if !ok {
   711  			label = h.nextLabel()
   712  			if debugHVNVerbose && h.log != nil {
   713  				fmt.Fprintf(h.log, "\tcreate p%d: union %s\n", label, xpe.String())
   714  			}
   715  			h.hvnLabel[key] = label
   716  		}
   717  		xpe.Clear()
   718  		xpe.Insert(int(label))
   719  	}
   720  
   721  	if debugHVNVerbose && h.log != nil {
   722  		fmt.Fprintf(h.log, "\to%d has p%d\n", x, xpe.Min())
   723  	}
   724  }
   725  
   726  // coalesce combines two nodes in the offline constraint graph.
   727  // Precondition: x and y are canonical.
   728  func (h *hvn) coalesce(x, y onodeid) {
   729  	xo := h.onodes[x]
   730  	yo := h.onodes[y]
   731  
   732  	// x becomes y's canonical representative.
   733  	yo.rep = x
   734  
   735  	if debugHVNVerbose && h.log != nil {
   736  		fmt.Fprintf(h.log, "\tcoalesce o%d into o%d\n", y, x)
   737  	}
   738  
   739  	// x accumulates y's edges.
   740  	xo.edges.UnionWith(&yo.edges)
   741  	yo.edges.Clear()
   742  
   743  	// x accumulates y's implicit edges.
   744  	xo.implicit.UnionWith(&yo.implicit)
   745  	yo.implicit.Clear()
   746  
   747  	// x accumulates y's pointer-equivalence labels.
   748  	xo.peLabels.UnionWith(&yo.peLabels)
   749  	yo.peLabels.Clear()
   750  
   751  	// x accumulates y's indirect flag.
   752  	if yo.indirect {
   753  		xo.indirect = true
   754  	}
   755  }
   756  
   757  // simplify computes a degenerate renumbering of nodeids from the PE
   758  // labels assigned by the hvn, and uses it to simplify the main
   759  // constraint graph, eliminating non-pointer nodes and duplicate
   760  // constraints.
   761  func (h *hvn) simplify() {
   762  	// canon maps each peLabel to its canonical main node.
   763  	canon := make([]nodeid, h.label)
   764  	for i := range canon {
   765  		canon[i] = nodeid(h.N) // indicates "unset"
   766  	}
   767  
   768  	// mapping maps each main node index to the index of the canonical node.
   769  	mapping := make([]nodeid, len(h.a.nodes))
   770  
   771  	for id := range h.a.nodes {
   772  		id := nodeid(id)
   773  		if id == 0 {
   774  			canon[0] = 0
   775  			mapping[0] = 0
   776  			continue
   777  		}
   778  		oid := h.find(onodeid(id))
   779  		peLabels := &h.onodes[oid].peLabels
   780  		assert(peLabels.Len() == 1, "PE class is not a singleton")
   781  		label := peLabel(peLabels.Min())
   782  
   783  		canonID := canon[label]
   784  		if canonID == nodeid(h.N) {
   785  			// id becomes the representative of the PE label.
   786  			canonID = id
   787  			canon[label] = canonID
   788  
   789  			if h.a.log != nil {
   790  				fmt.Fprintf(h.a.log, "\tpts(n%d) is canonical : \t(%s)\n",
   791  					id, h.a.nodes[id].typ)
   792  			}
   793  
   794  		} else {
   795  			// Link the solver states for the two nodes.
   796  			assert(h.a.nodes[canonID].solve != nil, "missing solver state")
   797  			h.a.nodes[id].solve = h.a.nodes[canonID].solve
   798  
   799  			if h.a.log != nil {
   800  				// TODO(adonovan): debug: reorganize the log so it prints
   801  				// one line:
   802  				// 	pe y = x1, ..., xn
   803  				// for each canonical y.  Requires allocation.
   804  				fmt.Fprintf(h.a.log, "\tpts(n%d) = pts(n%d) : %s\n",
   805  					id, canonID, h.a.nodes[id].typ)
   806  			}
   807  		}
   808  
   809  		mapping[id] = canonID
   810  	}
   811  
   812  	// Renumber the constraints, eliminate duplicates, and eliminate
   813  	// any containing non-pointers (n0).
   814  	addrs := make(map[addrConstraint]bool)
   815  	copys := make(map[copyConstraint]bool)
   816  	loads := make(map[loadConstraint]bool)
   817  	stores := make(map[storeConstraint]bool)
   818  	offsetAddrs := make(map[offsetAddrConstraint]bool)
   819  	untags := make(map[untagConstraint]bool)
   820  	typeFilters := make(map[typeFilterConstraint]bool)
   821  	invokes := make(map[invokeConstraint]bool)
   822  
   823  	nbefore := len(h.a.constraints)
   824  	cc := h.a.constraints[:0] // in-situ compaction
   825  	for _, c := range h.a.constraints {
   826  		// Renumber.
   827  		switch c := c.(type) {
   828  		case *addrConstraint:
   829  			// Don't renumber c.src since it is the label of
   830  			// an addressable object and will appear in PT sets.
   831  			c.dst = mapping[c.dst]
   832  		default:
   833  			c.renumber(mapping)
   834  		}
   835  
   836  		if c.ptr() == 0 {
   837  			continue // skip: constraint attached to non-pointer
   838  		}
   839  
   840  		var dup bool
   841  		switch c := c.(type) {
   842  		case *addrConstraint:
   843  			_, dup = addrs[*c]
   844  			addrs[*c] = true
   845  
   846  		case *copyConstraint:
   847  			if c.src == c.dst {
   848  				continue // skip degenerate copies
   849  			}
   850  			if c.src == 0 {
   851  				continue // skip copy from non-pointer
   852  			}
   853  			_, dup = copys[*c]
   854  			copys[*c] = true
   855  
   856  		case *loadConstraint:
   857  			if c.src == 0 {
   858  				continue // skip load from non-pointer
   859  			}
   860  			_, dup = loads[*c]
   861  			loads[*c] = true
   862  
   863  		case *storeConstraint:
   864  			if c.src == 0 {
   865  				continue // skip store from non-pointer
   866  			}
   867  			_, dup = stores[*c]
   868  			stores[*c] = true
   869  
   870  		case *offsetAddrConstraint:
   871  			if c.src == 0 {
   872  				continue // skip offset from non-pointer
   873  			}
   874  			_, dup = offsetAddrs[*c]
   875  			offsetAddrs[*c] = true
   876  
   877  		case *untagConstraint:
   878  			if c.src == 0 {
   879  				continue // skip untag of non-pointer
   880  			}
   881  			_, dup = untags[*c]
   882  			untags[*c] = true
   883  
   884  		case *typeFilterConstraint:
   885  			if c.src == 0 {
   886  				continue // skip filter of non-pointer
   887  			}
   888  			_, dup = typeFilters[*c]
   889  			typeFilters[*c] = true
   890  
   891  		case *invokeConstraint:
   892  			if c.params == 0 {
   893  				panic("non-pointer invoke.params")
   894  			}
   895  			if c.iface == 0 {
   896  				continue // skip invoke on non-pointer
   897  			}
   898  			_, dup = invokes[*c]
   899  			invokes[*c] = true
   900  
   901  		default:
   902  			// We don't bother de-duping advanced constraints
   903  			// (e.g. reflection) since they are uncommon.
   904  
   905  			// Eliminate constraints containing non-pointer nodeids.
   906  			//
   907  			// We use reflection to find the fields to avoid
   908  			// adding yet another method to constraint.
   909  			//
   910  			// TODO(adonovan): experiment with a constraint
   911  			// method that returns a slice of pointers to
   912  			// nodeids fields to enable uniform iteration;
   913  			// the renumber() method could be removed and
   914  			// implemented using the new one.
   915  			//
   916  			// TODO(adonovan): opt: this is unsound since
   917  			// some constraints still have an effect if one
   918  			// of the operands is zero: rVCall, rVMapIndex,
   919  			// rvSetMapIndex.  Handle them specially.
   920  			rtNodeid := reflect.TypeOf(nodeid(0))
   921  			x := reflect.ValueOf(c).Elem()
   922  			for i, nf := 0, x.NumField(); i < nf; i++ {
   923  				f := x.Field(i)
   924  				if f.Type() == rtNodeid {
   925  					if f.Uint() == 0 {
   926  						dup = true // skip it
   927  						break
   928  					}
   929  				}
   930  			}
   931  		}
   932  		if dup {
   933  			continue // skip duplicates
   934  		}
   935  
   936  		cc = append(cc, c)
   937  	}
   938  	h.a.constraints = cc
   939  
   940  	if h.log != nil {
   941  		fmt.Fprintf(h.log, "#constraints: was %d, now %d\n", nbefore, len(h.a.constraints))
   942  	}
   943  }
   944  
   945  // find returns the canonical onodeid for x.
   946  // (The onodes form a disjoint set forest.)
   947  func (h *hvn) find(x onodeid) onodeid {
   948  	// TODO(adonovan): opt: this is a CPU hotspot.  Try "union by rank".
   949  	xo := h.onodes[x]
   950  	rep := xo.rep
   951  	if rep != x {
   952  		rep = h.find(rep) // simple path compression
   953  		xo.rep = rep
   954  	}
   955  	return rep
   956  }
   957  
   958  func (h *hvn) checkCanonical(x onodeid) {
   959  	if debugHVN {
   960  		assert(x == h.find(x), "not canonical")
   961  	}
   962  }
   963  
   964  func assert(p bool, msg string) {
   965  	if debugHVN && !p {
   966  		panic("assertion failed: " + msg)
   967  	}
   968  }
   969  

View as plain text