...

Source file src/go/types/lookup.go

Documentation: go/types

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements various field and method lookup functions.
     6  
     7  package types
     8  
     9  import (
    10  	"bytes"
    11  	"strings"
    12  )
    13  
    14  // Internal use of LookupFieldOrMethod: If the obj result is a method
    15  // associated with a concrete (non-interface) type, the method's signature
    16  // may not be fully set up. Call Checker.objDecl(obj, nil) before accessing
    17  // the method's type.
    18  
    19  // LookupFieldOrMethod looks up a field or method with given package and name
    20  // in T and returns the corresponding *Var or *Func, an index sequence, and a
    21  // bool indicating if there were any pointer indirections on the path to the
    22  // field or method. If addressable is set, T is the type of an addressable
    23  // variable (only matters for method lookups). T must not be nil.
    24  //
    25  // The last index entry is the field or method index in the (possibly embedded)
    26  // type where the entry was found, either:
    27  //
    28  //  1. the list of declared methods of a named type; or
    29  //  2. the list of all methods (method set) of an interface type; or
    30  //  3. the list of fields of a struct type.
    31  //
    32  // The earlier index entries are the indices of the embedded struct fields
    33  // traversed to get to the found entry, starting at depth 0.
    34  //
    35  // If no entry is found, a nil object is returned. In this case, the returned
    36  // index and indirect values have the following meaning:
    37  //
    38  //   - If index != nil, the index sequence points to an ambiguous entry
    39  //     (the same name appeared more than once at the same embedding level).
    40  //
    41  //   - If indirect is set, a method with a pointer receiver type was found
    42  //     but there was no pointer on the path from the actual receiver type to
    43  //     the method's formal receiver base type, nor was the receiver addressable.
    44  func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
    45  	if T == nil {
    46  		panic("LookupFieldOrMethod on nil type")
    47  	}
    48  
    49  	// Methods cannot be associated to a named pointer type.
    50  	// (spec: "The type denoted by T is called the receiver base type;
    51  	// it must not be a pointer or interface type and it must be declared
    52  	// in the same package as the method.").
    53  	// Thus, if we have a named pointer type, proceed with the underlying
    54  	// pointer type but discard the result if it is a method since we would
    55  	// not have found it for T (see also issue 8590).
    56  	if t, _ := T.(*Named); t != nil {
    57  		if p, _ := t.Underlying().(*Pointer); p != nil {
    58  			obj, index, indirect = lookupFieldOrMethod(p, false, pkg, name, false)
    59  			if _, ok := obj.(*Func); ok {
    60  				return nil, nil, false
    61  			}
    62  			return
    63  		}
    64  	}
    65  
    66  	obj, index, indirect = lookupFieldOrMethod(T, addressable, pkg, name, false)
    67  
    68  	// If we didn't find anything and if we have a type parameter with a core type,
    69  	// see if there is a matching field (but not a method, those need to be declared
    70  	// explicitly in the constraint). If the constraint is a named pointer type (see
    71  	// above), we are ok here because only fields are accepted as results.
    72  	const enableTParamFieldLookup = false // see issue #51576
    73  	if enableTParamFieldLookup && obj == nil && isTypeParam(T) {
    74  		if t := coreType(T); t != nil {
    75  			obj, index, indirect = lookupFieldOrMethod(t, addressable, pkg, name, false)
    76  			if _, ok := obj.(*Var); !ok {
    77  				obj, index, indirect = nil, nil, false // accept fields (variables) only
    78  			}
    79  		}
    80  	}
    81  	return
    82  }
    83  
    84  // lookupFieldOrMethod should only be called by LookupFieldOrMethod and missingMethod.
    85  // If foldCase is true, the lookup for methods will include looking for any method
    86  // which case-folds to the same as 'name' (used for giving helpful error messages).
    87  //
    88  // The resulting object may not be fully type-checked.
    89  func lookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string, foldCase bool) (obj Object, index []int, indirect bool) {
    90  	// WARNING: The code in this function is extremely subtle - do not modify casually!
    91  
    92  	if name == "_" {
    93  		return // blank fields/methods are never found
    94  	}
    95  
    96  	typ, isPtr := deref(T)
    97  
    98  	// *typ where typ is an interface (incl. a type parameter) has no methods.
    99  	if isPtr {
   100  		if _, ok := under(typ).(*Interface); ok {
   101  			return
   102  		}
   103  	}
   104  
   105  	// Start with typ as single entry at shallowest depth.
   106  	current := []embeddedType{{typ, nil, isPtr, false}}
   107  
   108  	// seen tracks named types that we have seen already, allocated lazily.
   109  	// Used to avoid endless searches in case of recursive types.
   110  	//
   111  	// We must use a lookup on identity rather than a simple map[*Named]bool as
   112  	// instantiated types may be identical but not equal.
   113  	var seen instanceLookup
   114  
   115  	// search current depth
   116  	for len(current) > 0 {
   117  		var next []embeddedType // embedded types found at current depth
   118  
   119  		// look for (pkg, name) in all types at current depth
   120  		for _, e := range current {
   121  			typ := e.typ
   122  
   123  			// If we have a named type, we may have associated methods.
   124  			// Look for those first.
   125  			if named, _ := typ.(*Named); named != nil {
   126  				if alt := seen.lookup(named); alt != nil {
   127  					// We have seen this type before, at a more shallow depth
   128  					// (note that multiples of this type at the current depth
   129  					// were consolidated before). The type at that depth shadows
   130  					// this same type at the current depth, so we can ignore
   131  					// this one.
   132  					continue
   133  				}
   134  				seen.add(named)
   135  
   136  				// look for a matching attached method
   137  				if i, m := named.lookupMethod(pkg, name, foldCase); m != nil {
   138  					// potential match
   139  					// caution: method may not have a proper signature yet
   140  					index = concat(e.index, i)
   141  					if obj != nil || e.multiples {
   142  						return nil, index, false // collision
   143  					}
   144  					obj = m
   145  					indirect = e.indirect
   146  					continue // we can't have a matching field or interface method
   147  				}
   148  			}
   149  
   150  			switch t := under(typ).(type) {
   151  			case *Struct:
   152  				// look for a matching field and collect embedded types
   153  				for i, f := range t.fields {
   154  					if f.sameId(pkg, name) {
   155  						assert(f.typ != nil)
   156  						index = concat(e.index, i)
   157  						if obj != nil || e.multiples {
   158  							return nil, index, false // collision
   159  						}
   160  						obj = f
   161  						indirect = e.indirect
   162  						continue // we can't have a matching interface method
   163  					}
   164  					// Collect embedded struct fields for searching the next
   165  					// lower depth, but only if we have not seen a match yet
   166  					// (if we have a match it is either the desired field or
   167  					// we have a name collision on the same depth; in either
   168  					// case we don't need to look further).
   169  					// Embedded fields are always of the form T or *T where
   170  					// T is a type name. If e.typ appeared multiple times at
   171  					// this depth, f.typ appears multiple times at the next
   172  					// depth.
   173  					if obj == nil && f.embedded {
   174  						typ, isPtr := deref(f.typ)
   175  						// TODO(gri) optimization: ignore types that can't
   176  						// have fields or methods (only Named, Struct, and
   177  						// Interface types need to be considered).
   178  						next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
   179  					}
   180  				}
   181  
   182  			case *Interface:
   183  				// look for a matching method (interface may be a type parameter)
   184  				if i, m := t.typeSet().LookupMethod(pkg, name, foldCase); m != nil {
   185  					assert(m.typ != nil)
   186  					index = concat(e.index, i)
   187  					if obj != nil || e.multiples {
   188  						return nil, index, false // collision
   189  					}
   190  					obj = m
   191  					indirect = e.indirect
   192  				}
   193  			}
   194  		}
   195  
   196  		if obj != nil {
   197  			// found a potential match
   198  			// spec: "A method call x.m() is valid if the method set of (the type of) x
   199  			//        contains m and the argument list can be assigned to the parameter
   200  			//        list of m. If x is addressable and &x's method set contains m, x.m()
   201  			//        is shorthand for (&x).m()".
   202  			if f, _ := obj.(*Func); f != nil {
   203  				// determine if method has a pointer receiver
   204  				if f.hasPtrRecv() && !indirect && !addressable {
   205  					return nil, nil, true // pointer/addressable receiver required
   206  				}
   207  			}
   208  			return
   209  		}
   210  
   211  		current = consolidateMultiples(next)
   212  	}
   213  
   214  	return nil, nil, false // not found
   215  }
   216  
   217  // embeddedType represents an embedded type
   218  type embeddedType struct {
   219  	typ       Type
   220  	index     []int // embedded field indices, starting with index at depth 0
   221  	indirect  bool  // if set, there was a pointer indirection on the path to this field
   222  	multiples bool  // if set, typ appears multiple times at this depth
   223  }
   224  
   225  // consolidateMultiples collects multiple list entries with the same type
   226  // into a single entry marked as containing multiples. The result is the
   227  // consolidated list.
   228  func consolidateMultiples(list []embeddedType) []embeddedType {
   229  	if len(list) <= 1 {
   230  		return list // at most one entry - nothing to do
   231  	}
   232  
   233  	n := 0                     // number of entries w/ unique type
   234  	prev := make(map[Type]int) // index at which type was previously seen
   235  	for _, e := range list {
   236  		if i, found := lookupType(prev, e.typ); found {
   237  			list[i].multiples = true
   238  			// ignore this entry
   239  		} else {
   240  			prev[e.typ] = n
   241  			list[n] = e
   242  			n++
   243  		}
   244  	}
   245  	return list[:n]
   246  }
   247  
   248  func lookupType(m map[Type]int, typ Type) (int, bool) {
   249  	// fast path: maybe the types are equal
   250  	if i, found := m[typ]; found {
   251  		return i, true
   252  	}
   253  
   254  	for t, i := range m {
   255  		if Identical(t, typ) {
   256  			return i, true
   257  		}
   258  	}
   259  
   260  	return 0, false
   261  }
   262  
   263  type instanceLookup struct {
   264  	m map[*Named][]*Named
   265  }
   266  
   267  func (l *instanceLookup) lookup(inst *Named) *Named {
   268  	for _, t := range l.m[inst.Origin()] {
   269  		if Identical(inst, t) {
   270  			return t
   271  		}
   272  	}
   273  	return nil
   274  }
   275  
   276  func (l *instanceLookup) add(inst *Named) {
   277  	if l.m == nil {
   278  		l.m = make(map[*Named][]*Named)
   279  	}
   280  	insts := l.m[inst.Origin()]
   281  	l.m[inst.Origin()] = append(insts, inst)
   282  }
   283  
   284  // MissingMethod returns (nil, false) if V implements T, otherwise it
   285  // returns a missing method required by T and whether it is missing or
   286  // just has the wrong type.
   287  //
   288  // For non-interface types V, or if static is set, V implements T if all
   289  // methods of T are present in V. Otherwise (V is an interface and static
   290  // is not set), MissingMethod only checks that methods of T which are also
   291  // present in V have matching types (e.g., for a type assertion x.(T) where
   292  // x is of interface type V).
   293  func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) {
   294  	m, alt := (*Checker)(nil).missingMethod(V, T, static)
   295  	// Only report a wrong type if the alternative method has the same name as m.
   296  	return m, alt != nil && alt.name == m.name // alt != nil implies m != nil
   297  }
   298  
   299  // missingMethod is like MissingMethod but accepts a *Checker as receiver.
   300  // The receiver may be nil if missingMethod is invoked through an exported
   301  // API call (such as MissingMethod), i.e., when all methods have been type-
   302  // checked.
   303  //
   304  // If a method is missing on T but is found on *T, or if a method is found
   305  // on T when looked up with case-folding, this alternative method is returned
   306  // as the second result.
   307  func (check *Checker) missingMethod(V Type, T *Interface, static bool) (method, alt *Func) {
   308  	if T.NumMethods() == 0 {
   309  		return
   310  	}
   311  
   312  	// V is an interface
   313  	if u, _ := under(V).(*Interface); u != nil {
   314  		tset := u.typeSet()
   315  		for _, m := range T.typeSet().methods {
   316  			_, f := tset.LookupMethod(m.pkg, m.name, false)
   317  
   318  			if f == nil {
   319  				if !static {
   320  					continue
   321  				}
   322  				return m, nil
   323  			}
   324  
   325  			if !Identical(f.typ, m.typ) {
   326  				return m, f
   327  			}
   328  		}
   329  
   330  		return
   331  	}
   332  
   333  	// V is not an interface
   334  	for _, m := range T.typeSet().methods {
   335  		// TODO(gri) should this be calling LookupFieldOrMethod instead (and why not)?
   336  		obj, _, _ := lookupFieldOrMethod(V, false, m.pkg, m.name, false)
   337  
   338  		// check if m is on *V, or on V with case-folding
   339  		found := obj != nil
   340  		if !found {
   341  			// TODO(gri) Instead of NewPointer(V) below, can we just set the "addressable" argument?
   342  			obj, _, _ = lookupFieldOrMethod(NewPointer(V), false, m.pkg, m.name, false)
   343  			if obj == nil {
   344  				obj, _, _ = lookupFieldOrMethod(V, false, m.pkg, m.name, true /* fold case */)
   345  			}
   346  		}
   347  
   348  		// we must have a method (not a struct field)
   349  		f, _ := obj.(*Func)
   350  		if f == nil {
   351  			return m, nil
   352  		}
   353  
   354  		// methods may not have a fully set up signature yet
   355  		if check != nil {
   356  			check.objDecl(f, nil)
   357  		}
   358  
   359  		if !found || !Identical(f.typ, m.typ) {
   360  			return m, f
   361  		}
   362  	}
   363  
   364  	return
   365  }
   366  
   367  // missingMethodReason returns a string giving the detailed reason for a missing method m,
   368  // where m is missing from V, but required by T. It puts the reason in parentheses,
   369  // and may include more have/want info after that. If non-nil, alt is a relevant
   370  // method that matches in some way. It may have the correct name, but wrong type, or
   371  // it may have a pointer receiver, or it may have the correct name except wrong case.
   372  // check may be nil.
   373  func (check *Checker) missingMethodReason(V, T Type, m, alt *Func) string {
   374  	var mname string
   375  	if check != nil && compilerErrorMessages {
   376  		mname = m.Name() + " method"
   377  	} else {
   378  		mname = "method " + m.Name()
   379  	}
   380  
   381  	if alt != nil {
   382  		if m.Name() != alt.Name() {
   383  			return check.sprintf("(missing %s)\n\t\thave %s\n\t\twant %s",
   384  				mname, check.funcString(alt), check.funcString(m))
   385  		}
   386  
   387  		if Identical(m.typ, alt.typ) {
   388  			return check.sprintf("(%s has pointer receiver)", mname)
   389  		}
   390  
   391  		return check.sprintf("(wrong type for %s)\n\t\thave %s\n\t\twant %s",
   392  			mname, check.funcString(alt), check.funcString(m))
   393  	}
   394  
   395  	if isInterfacePtr(V) {
   396  		return "(" + check.interfacePtrError(V) + ")"
   397  	}
   398  
   399  	if isInterfacePtr(T) {
   400  		return "(" + check.interfacePtrError(T) + ")"
   401  	}
   402  
   403  	return check.sprintf("(missing %s)", mname)
   404  }
   405  
   406  func isInterfacePtr(T Type) bool {
   407  	p, _ := under(T).(*Pointer)
   408  	return p != nil && IsInterface(p.base)
   409  }
   410  
   411  // check may be nil.
   412  func (check *Checker) interfacePtrError(T Type) string {
   413  	assert(isInterfacePtr(T))
   414  	if p, _ := under(T).(*Pointer); isTypeParam(p.base) {
   415  		return check.sprintf("type %s is pointer to type parameter, not type parameter", T)
   416  	}
   417  	return check.sprintf("type %s is pointer to interface, not interface", T)
   418  }
   419  
   420  // check may be nil.
   421  func (check *Checker) funcString(f *Func) string {
   422  	buf := bytes.NewBufferString(f.name)
   423  	var qf Qualifier
   424  	if check != nil {
   425  		qf = check.qualifier
   426  	}
   427  	WriteSignature(buf, f.typ.(*Signature), qf)
   428  	return buf.String()
   429  }
   430  
   431  // assertableTo reports whether a value of type V can be asserted to have type T.
   432  // It returns (nil, false) as affirmative answer. Otherwise it returns a missing
   433  // method required by V and whether it is missing or just has the wrong type.
   434  // The receiver may be nil if assertableTo is invoked through an exported API call
   435  // (such as AssertableTo), i.e., when all methods have been type-checked.
   436  // TODO(gri) replace calls to this function with calls to newAssertableTo.
   437  func (check *Checker) assertableTo(V *Interface, T Type) (method, wrongType *Func) {
   438  	// no static check is required if T is an interface
   439  	// spec: "If T is an interface type, x.(T) asserts that the
   440  	//        dynamic type of x implements the interface T."
   441  	if IsInterface(T) {
   442  		return
   443  	}
   444  	// TODO(gri) fix this for generalized interfaces
   445  	return check.missingMethod(T, V, false)
   446  }
   447  
   448  // newAssertableTo reports whether a value of type V can be asserted to have type T.
   449  // It also implements behavior for interfaces that currently are only permitted
   450  // in constraint position (we have not yet defined that behavior in the spec).
   451  func (check *Checker) newAssertableTo(V *Interface, T Type) error {
   452  	// no static check is required if T is an interface
   453  	// spec: "If T is an interface type, x.(T) asserts that the
   454  	//        dynamic type of x implements the interface T."
   455  	if IsInterface(T) {
   456  		return nil
   457  	}
   458  	return check.implements(T, V)
   459  }
   460  
   461  // deref dereferences typ if it is a *Pointer and returns its base and true.
   462  // Otherwise it returns (typ, false).
   463  func deref(typ Type) (Type, bool) {
   464  	if p, _ := typ.(*Pointer); p != nil {
   465  		// p.base should never be nil, but be conservative
   466  		if p.base == nil {
   467  			if debug {
   468  				panic("pointer with nil base type (possibly due to an invalid cyclic declaration)")
   469  			}
   470  			return Typ[Invalid], true
   471  		}
   472  		return p.base, true
   473  	}
   474  	return typ, false
   475  }
   476  
   477  // derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
   478  // (named or unnamed) struct and returns its base. Otherwise it returns typ.
   479  func derefStructPtr(typ Type) Type {
   480  	if p, _ := under(typ).(*Pointer); p != nil {
   481  		if _, ok := under(p.base).(*Struct); ok {
   482  			return p.base
   483  		}
   484  	}
   485  	return typ
   486  }
   487  
   488  // concat returns the result of concatenating list and i.
   489  // The result does not share its underlying array with list.
   490  func concat(list []int, i int) []int {
   491  	var t []int
   492  	t = append(t, list...)
   493  	return append(t, i)
   494  }
   495  
   496  // fieldIndex returns the index for the field with matching package and name, or a value < 0.
   497  func fieldIndex(fields []*Var, pkg *Package, name string) int {
   498  	if name != "_" {
   499  		for i, f := range fields {
   500  			if f.sameId(pkg, name) {
   501  				return i
   502  			}
   503  		}
   504  	}
   505  	return -1
   506  }
   507  
   508  // lookupMethod returns the index of and method with matching package and name, or (-1, nil).
   509  // If foldCase is true, method names are considered equal if they are equal with case folding.
   510  func lookupMethod(methods []*Func, pkg *Package, name string, foldCase bool) (int, *Func) {
   511  	if name != "_" {
   512  		for i, m := range methods {
   513  			if (m.name == name || foldCase && strings.EqualFold(m.name, name)) && m.sameId(pkg, m.name) {
   514  				return i, m
   515  			}
   516  		}
   517  	}
   518  	return -1, nil
   519  }
   520  

View as plain text